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Overview

• Statistical Inference = generating conclusions about a population from a noisy sample
• Goal = extend beyond data to population
• Statistical Inference = only formal system of inference we have
• many different modes, but two broad flavors of inference (inferential paradigms): Bayesian vs

Frequencist

– Frequencist = uses long run proportion of times an event occurs independent identically dis-
tributed repetitions

∗ frequentist is what this class is focused on
∗ believes if an experiment is repeated many many times, the resultant percentage of suc-
cess/something happening defines that population parameter

– Bayesian = probability estimate for a hypothesis is updated as additional evidence is acquired

• statistic = number computed from a sample of data

– statistics are used to infer information about a population

• random variable = outcome from an experiment

– deterministic processes (variance/means) produce additional random variables when applied to
random variables, and they have their own distributions

Probability

• Probability = the study of quantifying the likelihood of particular events occurring

– given a random experiment, probability = population quantity that summarizes the randomness
∗ not in the data at hand, but a conceptual quantity that exist in the population that we want

to estimate

General Probability Rules

• discovered by Russian mathematician Kolmogorov, also known as “Probability Calculus”
• probability = function of any set of outcomes and assigns it a number between 0 and 1

– 0 ≤ P (E) ≤ 1, where E = event

• probability that nothing occurs = 0 (impossible, have to roll dice to create outcome), that something
occurs is 1 (certain)

• probability of outcome or event E, P (E) = ratio of ways that E could occur to number of all possible
outcomes or events

• probability of something = 1 - probability of the opposite occurring
• probability of the union of any two sets of outcomes that have nothing in common (mutually exclusive)

= sum of respective probabilities
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• if A implies occurrence of B, then P (A) occurring < P (B) occurring

• for any two events, probability of at least one occurs = the sum of their probabilities - their intersection
(in other words, probabilities can not be added simply if they have non-trivial intersection)
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• for independent events A and B, P (A ∪ B) = P (A)× P (B)
• for outcomes that can occur with different combination of events and these combinations are mutually

exclusive, the P (Etotal) =
∑
P (Epart)

Conditional Probability

• let B = an event so that P (B) > 0
• conditional probability of an event A, given B is defined as the probability that BOTH A and B

occurring divided by the probability of B occurring

P (A |B) = P (A ∩ B)
P (B)

• if A and B are independent, then

P (A |B) = P (A)P (B)
P (B) = P (A)

• example

– for die roll, A = {1}, B = {1, 3, 5}, then

P (1 | Odd) = P (A |B) = P (A ∩B)
P (B) = P (A)

P (B) = 1/6
3/6 = 1

3

Baye’s Rule

• definition
P (B |A) = P (A |B)P (B)

P (A |B)P (B) + P (A |Bc)P (Bc)
where Bc = corresponding probability of event B, P (Bc) = 1− P (B)
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Random Variables

• random variable = numeric outcome of experiment
• discrete (what you can count/categories) = assign probabilities to every number/value the variable

can take
– coin flip, rolling a die, web traffic in a day

• continuous (any number within a continuum) = assign probabilities to the range the variable can take
– BMI index, intelligence quotients
– Note: limitations of precision in taking the measurements may imply that the values are discrete,
but we in fact consider them continuous

• rbinom(), rnorm(), rgamma(), rpois(), runif() = functions to generate random variables from the
binomial, normal, Gamma, Poisson, and uniform distributions

• density and mass functions (population quantities, not what occurs in data) for random variables =
best starting point to model/think about probabilities for numeric outcome of experiments (variables)
– use data to estimate properties of population → linking sample to population

Probability Mass Function (PMF)

• evaluates the probability that the discrete random variable takes on a specific value
– measures the chance of a particular outcome happening
– always ≥ 0 for every possible outcome
–
∑

possible values that the variable can take = 1
• Bernoulli distribution example

– X = 0 → tails, X = 1 → heads
∗ X here represents potential outcome

– P (X = x) = (1
2 )x( 1

2 )1−x for X = 0, 1
∗ x here represents a value we can plug into the PMF
∗ general form → p(x) = (θ)x(1− θ)1−x

• dbinom(k, n, p) = return the probability of getting k successes out of n trials, given probability of
success is p

Probability Density Function (PDF)

• evaluates the probability that the continuous random variable takes on a specific value
– always ≥ 0 everywhere
– total area under curve must = 1

• areas under PDFs correspond to the probabilities for that random variable taking on that range of
values (PMF)
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• but the probability of the variable taking a specific value = 0 (area of a line is 0)

• Note: the above is true because it is modeling random variables as if they have infinite precision, when
in reality they do not

• dnorm(), dgamma(), dpois(), dunif() = return probability of a certain value from the normal, Gamma,
Poisson, and uniform distributions

Cumulative Distribution Function (CDF)

• CDF of a random variable X = probability that the random variable is ≤ value x

– F (x) = P (X ≤ x) = applies when X is discrete/continuous

• PDF = derivative of CDF

– integrate PDF → CDF
∗ integrate(function, lower=0, upper=1)→ can be used to evaluate integrals for a specified
range

• pbinom(), pnorm(), pgamma(), ppois(), punif() = returns the cumulative probabilities from 0 up to
a specified value from the binomial, normal, Gamma, Poisson, and uniform distributions

Survival Function

• survival function of a random variable X = probability the random variable > x, complement of CDF

– S(x) = P (X > x) = 1− F (x), where F (x) = CDF

Quantile

• the αth quantile of a distribution with distribution function F = point xα
– F (xα) = α

– percentile = quantile with α expressed as a percent
– median = 50th percentile
– α% of the possible outcomes lie below it
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• qbeta(quantileInDecimals, 2, 1) = returns quantiles for beta distribution

– works for qnorm(), qbinom(), qgamma(), qpois(), etc.

• median estimated in this fashion = a population median
• probability model connects data to population using assumptions

– population median = estimand, sample median = estimator

Independence

• two events A and B are independent if the following is true

– P (A ∩ B) = P (A)P (B)
– P (A |B) = P (A)

• two random variables X and Y are independent, if for any two sets, A and B, the following is true

– P ([X ∈ A] ∩ [Y ∈ B]) = P (X ∈ A)P (Y ∈ B)

• independence = statistically unrelated from one another
• if A is independent of B, then the following are true

– Ac is independent of B
– A is independent of Bc
– Ac is independent of Bc

IID Random Variables

• random variables are said to be IID if they are independent and identically distributed

– independent = statistically unrelated from each other
– identically distributed = all having been drawn from the same population distribution

• IID random variables = default model for random samples = default starting point of inference
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Diagnostic Test

• Let + and − be the results, positive and negative respectively, of a diagnostic test
• Let D = subject of the test has the disease, Dc = subject does not
• sensitivity = P (+ |D) = probability that the test is positive given that the subject has the disease

(the higher the better)
• specificity = P (− |Dc) = probability that the test is negative given that the subject does not have

the disease (the higher the better)
• positive predictive value = P (D |+) = probability that that subject has the disease given that the

test is positive
• negative predictive value = P (Dc | −) = probability that the subject does not have the disease

given the test is negative
• prevalence of disease = P (D) = marginal probability of disease

Example

• specificity of 98.5%, sensitivity = 99.7%, prevalence of disease = .1%

P (D | +) = P (+ | D)P (D)
P (+ | D)P (D) + P (+ | Dc)P (Dc)

= P (+ | D)P (D)
P (+ | D)P (D) + {1− P (− | Dc)}{1− P (D)}

= .997× .001
.997× .001 + .015× .999

= .062

• low positive predictive value → due to low prevalence of disease and somewhat modest specificity

– suppose it was know that the subject uses drugs and has regular intercourse with an HIV infect
partner (his probability of being + is higher than suspected)

– evidence implied by a positive test result

Likelihood Ratios

• diagnostic likelihood ratio of a positive test result is defined as

DLR+ = sensitivity

1− specificity = P (+ |D)
P (+ |Dc)

• diagnostic likelihood ratio of a negative test result is defined as

DLR− = 1− sensitivity
specificity

= P (− |D)
P (− |Dc)

• from Baye’s Rules, we can derive the positive predictive value and false positive value

P (D |+) = P (+ |D)P (D)
P (+ |D)P (D) + P (+ |Dc)P (Dc) (1)

P (Dc |+) = P (+ |Dc)P (Dc)
P (+ |D)P (D) + P (+ |Dc)P (Dc) (2)

• if we divide equation (1) over (2), the quantities over have the same denominator so we get the following

P (D |+)
P (Dc |+) = P (+ |D)

P (+ |Dc) ×
P (D)
P (Dc)
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which can also be written as

post-test odds of D = DLR+ × pre-test odds of D

– odds = p/(1− p)
– P (D)

P (Dc) = pre-test odds, or odds of disease in absence of test

– P (D |+)
P (+ |Dc) = post-test odds, or odds of disease given a positive test result

– DLR+ = factor by which the odds in the presence of a positive test can be multiplied to obtain
the post-test odds

– DLR− = relates the decrease in odds of disease after a negative result

• following the previous example, for sensitivity of 0.997 and specificity of 0.985, so the diagnostic
likelihood ratios are as follows

DLR+ = .997/(1− .985) = 66 DLR− = (1− .997)/.985 = 0.003

– this indicates that the result of the positive test is the odds of disease is 66 times the pretest odds
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Expected Values/Mean

• useful for characterizing a distribution (properties of distributions)

• mean = characterization of the center of the distribution = expected value

• expected value operation = linear → E(aX + bY ) = aE(X) + bE(Y )

• variance/standard deviation = characterization of how spread out the distribution is

• sample expected values for sample mean and variance will estimate the population counterparts

• population mean

– expected value/mean of a random variable = center of its distribution (center of mass)
– discrete variables

∗ for X with PMF p(x), the population mean is defined as

E[X] =
∑
x

xp(x)

where the sum is taken over all possible values of x
∗ E[X] = center of mass of a collection of location and weights x, p(x)
∗ coin flip example: E[X] = 0× (1− p) + 1× p = p

– continuous variable
∗ for X with PDF f(x), the expected value = the center of mass of the density
∗ instead of summing over discrete values, the expectation integrates over a continuous function

· PDF = f(x)
·
∫
xf(x) = area under the PDF curve = mean/expected value of X

• sample mean

– sample mean estimates the population mean
∗ sample mean = center of mass of observed data = empirical mean

X̄ =
n∑
x

xip(xi)

where p(xi) = 1/n

# load relevant packages
library(UsingR); data(galton); library(ggplot2)
# plot galton data
g <- ggplot(galton, aes(x = child))
# add histogram for children data
g <- g + geom_histogram(fill = "salmon", binwidth=1, aes(y=..density..), colour="black")
# add density smooth
g <- g + geom_density(size = 2)
# add vertical line
g <- g + geom_vline(xintercept = mean(galton$child), size = 2)
# print graph
g
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• average of random variables = a new random variable where its distribution has an expected value
that is the same as the original distribution (centers are the same)

– the mean of the averages = average of the original data → estimates average of the population
– if E[sample mean] = population mean, then estimator for the sample mean is unbiased

∗ [derivation] let X1, X2, X3, . . . Xn be a collection of n samples from the population with
mean µ

∗ mean of this sample
X̄ = X1 +X2 +X3 + .+Xn

n

∗ since E(aX) = aE(X), the expected value of the mean is can be written as

E

[
X1 +X2 +X3 + ...+Xn

n

]
= 1
n
× [E(X1) + E(X2) + E(X3) + ...+ E(Xn)]

∗ since each of the E(Xi) is drawn from the population with mean µ, the expected value of each
sample should be

E(Xi) = µ

∗ therefore

E

[
X1 +X2 +X3 + ...+Xn

n

]
= 1
n
× [E(X1) + E(X2) + E(X3) + ...+ E(Xn)]

= 1
n
× [µ+ µ+ µ+ ...+ µ]

= 1
n
× n× µ

= µ

• Note: the more data that goes into the sample mean, the more concentrated its density/mass functions
are around the population mean

nosim <- 1000
# simulate data for sample size 1 to 4
dat <- data.frame(

x = c(sample(1 : 6, nosim, replace = TRUE),
apply(matrix(sample(1 : 6, nosim * 2, replace = TRUE), nosim), 1, mean),
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apply(matrix(sample(1 : 6, nosim * 3, replace = TRUE), nosim), 1, mean),
apply(matrix(sample(1 : 6, nosim * 4, replace = TRUE), nosim), 1, mean)),

size = factor(rep(1 : 4, rep(nosim, 4))))
# plot histograms of means by sample size
g <- ggplot(dat, aes(x = x, fill = size)) + geom_histogram(alpha = .20, binwidth=.25, colour = "black")
g + facet_grid(. ~ size)
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Variance

# generate x value ranges
xvals <- seq(-10, 10, by = .01)
# generate data from normal distribution for sd of 1 to 4
dat <- data.frame(

y = c(dnorm(xvals, mean = 0, sd = 1),
dnorm(xvals, mean = 0, sd = 2),
dnorm(xvals, mean = 0, sd = 3),
dnorm(xvals, mean = 0, sd = 4)),

x = rep(xvals, 4),
factor = factor(rep(1 : 4, rep(length(xvals), 4)))

)
# plot 4 lines for the different standard deviations
ggplot(dat, aes(x = x, y = y, color = factor)) + geom_line(size = 2)
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• variance = measure of spread or dispersion, the expected squared distance of the variable from its
mean (expressed in X’s units2)
– as we can see from above, higher variances → more spread, lower → smaller spread
– V ar(X) = E[(X − µ)2] = E[X2]− E[X]2
– standard deviation =

√
V ar(X) → has same units as X

– example
∗ for die roll, E[X] = 3.5
∗ E[X2] = 12 × 1/6 + 22 × 1/6 + 32 × 1/6 + 42 × 1/6 + 52 × 1/6 + 62 × 1/6 = 15.17
∗ V ar(X) = E[X2]− E[X]2 ≈ 2.92

– example
∗ for coin flip, E[X] = p

∗ E[X2] = 02 × (1− p) + 12 × p = p

∗ V ar(X) = E[X2]− E[X]2 = p− p2 = p(1− p)

Sample Variance

• the sample variance is defined as

S2 =
∑
i=1(Xi − X̄)2

n− 1
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• on the above line representing the population (in magenta), any subset of data (3 of 14 selected, marked
in blue) will most likely have a variance that is lower than the population variance

• dividing by n − 1 will make the variance estimator larger to adjust for this fact → leads to more
accurate estimation → S2 = so called unbiased estimate of population variance

– S2 is a random variable, and therefore has an associated population distribution
∗ E[S2] = population variance, where S = sample standard deviation
∗ as we see from the simulation results below, with more data, the distribution for S2 gets more

concentrated around population variance

# specify number of simulations
nosim <- 10000;
# simulate data for various sample sizes
dat <- data.frame(

x = c(apply(matrix(rnorm(nosim * 10), nosim), 1, var),
apply(matrix(rnorm(nosim * 20), nosim), 1, var),
apply(matrix(rnorm(nosim * 30), nosim), 1, var)),

n = factor(rep(c("10", "20", "30"), c(nosim, nosim, nosim))) )
# plot density function for different sample size data
ggplot(dat, aes(x = x, fill = n)) + geom_density(size = 1, alpha = .2) +

geom_vline(xintercept = 1, size = 1)
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• Note: for any variable, properties of the population = parameter, estimates of properties for samples
= statistic

– below is a summary for the mean and variance for population and sample
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• distribution for mean of random samples

– expected value of the mean of distribution of means = expected value of the sample mean =
population mean

∗ E[X̄] = µ

– expected value of the variance of distribution of means
∗ V ar(X̄) = σ2/n

∗ as n becomes larger, the mean of random sample → more concentrated around the population
mean → variance approaches 0
· this again confirms that sample mean estimates population mean

– Note: normally we only have 1 sample mean (from collected sample) and can estimate the variance
σ2 → so we know a lot about the distribution of the means from the data observed

• standard error (SE)

– the standard error of the mean is defined as

SEmean = σ/
√
n

– this quantity is effectively the standard deviation of the distribution of a statistic (i.e. mean)
– represents variability of means

Entire Estimator-Estimation Relationship

• Start with a sample
• S2 = sample variance

– estimates how variable the population is
– estimates population variance σ2

– S2 = a random variable and has its own distribution centered around σ2

∗ more concentrated around σ2 as n increases

• X̄ = sample mean

– estimates population mean µ
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– X̄ = a random variable and has its own distribution centered around µ
∗ more concentrated around µ as n increases
∗ variance of distribution of X̄ = σ2/n

∗ estimate of variance = S2/n

∗ estimate of standard error = S/
√
n → “sample standard error of the mean”

· estimates how variable sample means (n size) from the population are

Example - Standard Normal

• variance = 1
• means of n standard normals (sample) have standard deviation = 1/

√
n

# specify number of simulations with 10 as number of observations per sample
nosim <- 1000; n <-10
# estimated standard deviation of mean
sd(apply(matrix(rnorm(nosim * n), nosim), 1, mean))

## [1] 0.31781

# actual standard deviation of mean of standard normals
1 / sqrt(n)

## [1] 0.3162278

• rnorm() = generate samples from the standard normal
• matrix() = puts all samples into a nosim by n matrix, so that each row represents a simulation with

nosim observations
• apply() = calculates the mean of the n samples
• sd() = returns standard deviation

Example - Standard Uniform

• standard uniform → triangle straight line distribution → mean = 1/2 and variance = 1/12
• means of random samples of n uniforms have have standard deviation of 1/

√
12× n

# estimated standard deviation of the sample means
sd(apply(matrix(runif(nosim * n), nosim), 1, mean))

## [1] 0.08998201

# actual standard deviation of the means
1/sqrt(12*n)

## [1] 0.09128709

Example - Poisson

• Poisson(x2) have variance of x2

• means of random samples of n Poisson(4) have standard deviation of 2/
√
n
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# estimated standard deviation of the sample means
sd(apply(matrix(rpois(nosim * n, lambda=4), nosim), 1, mean))

## [1] 0.615963

# actual standard deviation of the means
2/sqrt(n)

## [1] 0.6324555

Example - Bernoulli

• for p = 0.5, the Bernoulli distribution has variance of 0.25
• means of random samples of n coin flips have standard deviations of 1/(2

√
n)

# estimated standard deviation of the sample means
sd(apply(matrix(sample(0 : 1, nosim * n, replace = TRUE), nosim), 1, mean))

## [1] 0.156531

# actual standard deviation of the means
1/(2*sqrt(n))

## [1] 0.1581139

Example - Father/Son

# load data
library(UsingR); data(father.son);
# define son height as the x variable
x <- father.son$sheight
# n is the length
n<-length(x)
# plot histogram for son's heights
g <- ggplot(data = father.son, aes(x = sheight))
g <- g + geom_histogram(aes(y = ..density..), fill = "lightblue", binwidth=1, colour = "black")
g <- g + geom_density(size = 2, colour = "black")
g
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# we calculate the parameters for variance of distribution and sample mean,
round(c(sampleVar = var(x),

sampleMeanVar = var(x) / n,
# as well as standard deviation of distribution and sample mean
sampleSd = sd(x),
sampleMeanSd = sd(x) / sqrt(n)),2)

## sampleVar sampleMeanVar sampleSd sampleMeanSd
## 7.92 0.01 2.81 0.09
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Binomial Distribution

• binomial random variable = sum of n Bernoulli variables

X =
n∑
i=1

Xi

where X1, . . . , Xn = Bernoulli(p)
– PMF is defined as

P (X = x) =
(
n

x

)
px(1− p)n−x

where
(
n
x

)
= number of ways selecting x items out of n options without replacement or regard to

order and for x = 0, . . . , n
– combination or “n choose x” is defined as(

n

x

)
= n!
x!(n− x)!

– the base cases are (
n

n

)
=
(
n

0

)
= 1

• Bernoulli distribution = binary outcome
– only possible outcomes

∗ 1 = “success” with probability of p
∗ 0 = “failure” with probability of 1− p

– PMF is defined as
P (X = x) = px(1− p)1−x

– mean = p

– variance = p(1− p)

Example

• of 8 children, whats the probability of 7 or more girls (50/50 chance)?(
8
7

)
.57(1− .5)1 +

(
8
8

)
.58(1− .5)0 ≈ 0.04

# calculate probability using PMF
choose(8, 7) * .5 ^ 8 + choose(8, 8) * .5 ^ 8

## [1] 0.03515625

# calculate probability using CMF from distribution
pbinom(6, size = 8, prob = .5, lower.tail = FALSE)

## [1] 0.03515625

• choose(8, 7) = R function to calculate n choose x
• pbinom(6, size=8, prob =0.5, lower.tail=TRUE) = probability of 6 or less successes out of 8

samples with probability of 0.5 (CMF)
– lower.tail=FALSE = returns the complement, in this case it’s the probability of greater than 6

successes out of 8 samples with probability of 0.5
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Normal Distribution

• normal/Gaussian distribution for random variable X
– notation = X ∼ N(µ, σ2)
– mean = E[X] = µ

– variance = V ar(X) = σ2

– PMF is defined as
f(x) = (2πσ2)−1/2e−(x−µ)2/2σ2

• X ∼ N(0, 1) = standard normal distribution (standard normal random variables often denoted
using Z1, Z2, . . .)
– Note: see below graph for reference for the following observations
– ~68% of data/normal density → between ± 1 standard deviation from µ

– ~95% of data/normal density → between ± 2 standard deviation from µ

– ~99% of data/normal density → between ± 3 standard deviation from µ

– ± 1.28 standard deviations from µ → 10th (-) and 90th (+) percentiles
– ± 1.645 standard deviations from µ → 5th (-) and 95th (+) percentiles
– ± 1.96 standard deviations from µ → 2.5th (-) and 97.5th (+) percentiles
– ± 2.33 standard deviations from µ → 1st (-) and 99th (+) percentiles

# plot standard normal
x <- seq(-3, 3, length = 1000)
g <- ggplot(data.frame(x = x, y = dnorm(x)),

aes(x = x, y = y)) + geom_line(size = 2)
g <- g + geom_vline(xintercept = -3 : 3, size = 2)
g
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• for any X ∼ N(µ, σ2), calculating the number of standard deviations each observation is from the mean
converts the random variable to a standard normal (denoted as Z below)

Z = X − µ
σ

∼ N(0, 1)

• conversely, a standard normal can then be converted to any normal distribution by multiplying by
standard deviation and adding the mean

X = µ+ σZ ∼ N(µ, σ2)
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• qnorm(n, mean=mu, sd=sd) = returns the nth percentiles for the given normal distribution
• pnorm(x, mean=mu, sd=sd, lower.tail=F) = returns the probability of an observation drawn from

the given distribution is larger in value than the specified threshold x

Example

• the number of daily ad clicks for a company is (approximately) normally distributed with a mean of
1020 and a standard deviation of 50

• What’s the probability of getting more than 1,160 clicks in a day?

# calculate number of standard deviations from the mean
(1160 - 1020) / 50

## [1] 2.8

# calculate probability using given distribution
pnorm(1160, mean = 1020, sd = 50, lower.tail = FALSE)

## [1] 0.00255513

# calculate probability using standard normal
pnorm(2.8, lower.tail = FALSE)

## [1] 0.00255513

• therefore, it is not very likely (0.255513% chance), since 1,160 is 2.8 standard deviations from the mean
• What number of daily ad clicks would represent the one where 75% of days have fewer clicks (assuming

days are independent and identically distributed)?

qnorm(0.75, mean = 1020, sd = 50)

## [1] 1053.724

• therefore, 1053.7244875 would represent the threshold that has more clicks than 75% of days
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Poisson Distribution

• used to model counts

– mean = λ

– variance = λ

– PMF is defined as
P (X = x;λ) = λxe−λ

x!
where X = 0, 1, 2, ...∞

• modeling uses for Poisson distribution

– count data
– event-time/survival → cancer trials, some patients never develop and some do, dealing with the

data for both (“censoring”)
– contingency tables → record results for different characteristic measurements
– approximating binomials→ instances where n is large and p is small (i.e. pollution on lung disease)

∗ X ∼ Binomial(n, p)
∗ λ = np

– rates → X ∼ Poisson(λt)
∗ λ = E[X/t] → expected count per unit of time
∗ t = total monitoring time

• ppois(n, lambda = lambda*t) = returns probability of n or fewer events happening given the rate λ
and time t

Example

• number of people that show up at a bus stop can be modeled with Poisson distribution with a mean of
2.5 per hour

• after watching the bus stop for 4 hours, what is the probability that 3 or fewer people show up for the
whole time?

# calculate using distribution
ppois(3, lambda = 2.5 * 4)

## [1] 0.01033605

• as we can see from above, there is a 1.0336051% chance for 3 or fewer people show up total at the bus
stop during 4 hours of monitoring

Example - Approximating Binomial Distribution

• flip a coin with success probability of 0.01 a total 500 times (low p, large n)
• what’s the probability of 2 or fewer successes?

# calculate correct probability from Binomial distribution
pbinom(2, size = 500, prob = .01)

## [1] 0.1233858
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# estimate probability using Poisson distribution
ppois(2, lambda=500 * .01)

## [1] 0.124652

• as we can see from above, the two probabilities (12.3385774% vs 12.3385774%) are extremely close
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Asymptotics

• asymptotics = behavior of statistics as sample size → ∞
• useful for simple statistical inference/approximations
• form basis for frequentist interpretation of probabilities (“Law of Large Numbers”)

Law of Large Numbers (LLN)

• IID sample statistic that estimates property of the sample (i.e. mean, variance) becomes the population
statistic (i.e. population mean, population variance) as n increases

• Note: an estimator is consistent if it converges to what it is estimating
• sample mean/variance/standard deviation are all consistent estimators for their population counter-

parts

– X̄n is average of the result of n coin flips (i.e. the sample proportion of heads)
– as we flip a fair coin over and over, it eventually converges to the true probability of a head

Example - LLN for Normal and Bernoulli Distribution

• for this example, we will simulate 10000 samples from the normal and Bernoulli distributions respectively
• we will plot the distribution of sample means as n increases and compare it to the population means

# load library
library(gridExtra)
# specify number of trials
n <- 10000
# calculate sample (from normal distribution) means for different size of n
means <- cumsum(rnorm(n)) / (1 : n)
# plot sample size vs sample mean
g <- ggplot(data.frame(x = 1 : n, y = means), aes(x = x, y = y))
g <- g + geom_hline(yintercept = 0) + geom_line(size = 2)
g <- g + labs(x = "Number of obs", y = "Cumulative mean")
g <- g + ggtitle("Normal Distribution")
# calculate sample (coin flips) means for different size of n
means <- cumsum(sample(0 : 1, n , replace = TRUE)) / (1 : n)
# plot sample size vs sample mean
p <- ggplot(data.frame(x = 1 : n, y = means), aes(x = x, y = y))
p <- p + geom_hline(yintercept = 0.5) + geom_line(size = 2)
p <- p + labs(x = "Number of obs", y = "Cumulative mean")
p <- p + ggtitle("Bernoulli Distribution (Coin Flip)")
# combine plots
grid.arrange(g, p, ncol = 2)
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Bernoulli Distribution (Coin Flip)

• as we can see from above, for both distributions the sample means undeniably approach the respective
population means as n increases

Central Limit Theorem

• one of the most important theorems in statistics
• distribution of means of IID variables approaches the standard normal as sample size n increases
• in other words, for large values of n,

Estimate−Mean of Estimate
Std. Err. of Estimate = X̄n − µ

σ/
√
n

=
√
n(X̄n − µ)

σ
−→ N(0, 1)

• this translates to the distribution of the sample mean X̄n is approximately N(µ, σ2/n)

– distribution is centered at the population mean
– with standard deviation = standard error of the mean

• typically the Central Limit Theorem can be applied when n ≥ 30

Example - CLT with Bernoulli Trials (Coin Flips)

• for this example, we will simulate n flips of a possibly unfair coin

– let Xi be the 0 or 1 result of the ith flip of a possibly unfair coin
– sample proportion , p̂, is the average of the coin flips
– E[Xi] = p and V ar(Xi) = p(1− p)
– standard error of the mean is SE =

√
p(1− p)/n

• in principle, normalizing the random variable Xi, we should get an approximately standard normal
distribution

p̂− p√
p(1− p)/n

∼ N(0, 1)

• therefore, we will flip a coin n times, take the sample proportion of heads (successes with probability
p), subtract off 0.5 (ideal sample proportion) and multiply the result by 1

2
√
n
and compare it to the

standard normal
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• now, we can run the same simulation trials for an extremely unfair coin with p = 0.9
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• as we can see from both simulations, the converted/standardized distribution of the samples convert to
the standard normal distribution

• Note: speed at which the normalized coin flips converge to normal distribution depends on how biased
the coin is (value of p)

• Note: does not guarantee that the normal distribution will be a good approximation, but just that
eventually it will be a good approximation as n →∞

Confidence Intervals - Normal Distribution/Z Intervals

• Z confidence interval is defined as

Estimate± ZQ× SEEstimate

where ZQ = quantile from the standard normal distribution
• according to CLT, the sample mean, X̄, is approximately normal with mean µ and sd σ/

√
n
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• 95% confidence interval for the population mean µ is defined as

X̄ ± 2σ/
√
n

for the sample mean X̄ ∼ N(µ, σ2/n)

– you can choose to use 1.96 to be more accurate for the confidence interval
– P (X̄ > µ+ 2σ/

√
n or X̄ < µ− 2σ/

√
n) = 5%

– interpretation: if we were to repeatedly draw samples of size n from the population and construct
this confidence interval for each case, approximately 95% of the intervals will contain µ

• confidence intervals get narrower with less variability or larger sample sizes
• Note: Poisson and binomial distributions have exact intervals that don’t require CLT
• example

– for this example, we will compute the 95% confidence interval for sons height data in inches

# load son height data
data(father.son); x <- father.son$sheight
# calculate confidence interval for sons height in inches
mean(x) + c(-1, 1) * qnorm(0.975) * sd(x)/sqrt(length(x))

## [1] 68.51605 68.85209

Confidence Interval - Bernoulli Distribution/Wald Interval

• for Bernoulli distributions, Xi is 0 or 1 with success probability p and the variance is σ2 = p(1− p)
• the confidence interval takes the form of

p̂± z1−α/2

√
p(1− p)

n

• since the population proportion p is unknown, we can use the sampled proportion of success p̂ = X/n
as estimate

• p(1− p) is largest when p = 1/2, so 95% confidence interval can be calculated by

p̂± Z0.95

√
0.5(1− 0.5)

n
= p̂± qnorm(.975)

√
1

4n

= p̂± 1.96
√

1
4n

= p̂± 1.96
2

√
1
n

≈ p̂± 1√
n

– this is known as the Wald Confidence Interval and is useful in roughly estimating confidence
intervals

– generally need n = 100 for 1 decimal place, 10,000 for 2, and 1,000,000 for 3

• example

– suppose a random sample of 100 likely voters, 56 intent to vote for you, can you secure a victory?
– we can use the Wald interval to quickly estimate the 95% confidence interval
– as we can see below, because the interval [0.46, 0.66] contains values below 50%, victory is not

guaranteed
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– binom.test(k, n)$conf = returns confidence interval binomial distribution (collection of
Bernoulli trial) with k successes in n draws

# define sample probability and size
p = 0.56; n = 100
# Wald interval
c("WaldInterval" = p + c(-1, 1) * 1/sqrt(n))

## WaldInterval1 WaldInterval2
## 0.46 0.66

# 95% confidence interval
c("95CI" = p + c(-1, 1) * qnorm(.975) * sqrt(p * (1-p)/n))

## 95CI1 95CI2
## 0.4627099 0.6572901

# perform binomial test
binom.test(p*100, n*100)$conf.int

## [1] 0.004232871 0.007265981
## attr(,"conf.level")
## [1] 0.95

Confidence Interval - Binomial Distribution/Agresti-Coull Interval

• for a binomial distribution with smaller values of n (when n < 30, thus not large enough for CLT),
often time the normal confidence intervals, as defined by

p̂± z1−α/2

√
p(1− p)

n

do not provide accurate estimates

# simulate 1000 samples of size 20 each
n <- 20; nosim <- 1000
# simulate for p values from 0.1 to 0.9
pvals <- seq(.1, .9, by = .05)
# calculate the confidence intervals
coverage <- sapply(pvals, function(p){

# simulate binomial data
phats <- rbinom(nosim, prob = p, size = n) / n
# calculate lower 95% CI bound
ll <- phats - qnorm(.975) * sqrt(phats * (1 - phats) / n)
# calculate upper 95% CI bound
ul <- phats + qnorm(.975) * sqrt(phats * (1 - phats) / n)
# calculate percent of intervals that contain p
mean(ll < p & ul > p)

})
# plot CI results vs 95%
ggplot(data.frame(pvals, coverage), aes(x = pvals, y = coverage)) + geom_line(size = 2) + geom_hline(yintercept = 0.95) + ylim(.75, 1.0)
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• as we can see from above, the interval do not provide adequate coverage as 95% confidence intervals
(frequently only provide 80 to 90% coverage)

• we can construct the Agresti-Coull Interval, which is defined uses the adjustment

p̂ = X + 2
n+ 4

where we effectively add 2 to number of successes, X, and add 2 to number of failure
• therefore the interval becomes

X + 2
n+ 4 ± z1−α/2

√
p(1− p)

n

• Note: interval tend to be conservative
• example

# simulate 1000 samples of size 20 each
n <- 20; nosim <- 1000
# simulate for p values from 0.1 to 0.9
pvals <- seq(.1, .9, by = .05)
# calculate the confidence intervals
coverage <- sapply(pvals, function(p){

# simulate binomial data with Agresti/Coull Interval adjustment
phats <- (rbinom(nosim, prob = p, size = n) + 2) / (n + 4)

# calculate lower 95% CI bound
ll <- phats - qnorm(.975) * sqrt(phats * (1 - phats) / n)
# calculate upper 95% CI bound
ul <- phats + qnorm(.975) * sqrt(phats * (1 - phats) / n)
# calculate percent of intervals that contain p
mean(ll < p & ul > p)

})
# plot CI results vs 95%
ggplot(data.frame(pvals, coverage), aes(x = pvals, y = coverage)) + geom_line(size = 2) + geom_hline(yintercept = 0.95) + ylim(.75, 1.0)
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• as we can see from above, the coverage is much better for the 95% interval
• in fact, all of the estimates are more conservative as we previously discussed, indicating the Agresti-Coull

intervals are wider than the regular confidence intervals

Confidence Interval - Poisson Interval

• for X ∼ Poisson(λt)

– estimate rate λ̂ = X/t

– var(λ̂) = λ/t

– variance estimate = λ̂/t

• so the confidence interval is defined as

λ̂± z1−α/2

√
λ

t

– however, for small values of λ (few events larger time interval), we should not use the asymptotic
interval estimated

– example
∗ for this example, we will go through a specific scenario as well as a simulation exercise to

demonstrate the ineffectiveness of asymptotic intervals for small values of λ
∗ nuclear pump failed 5 times out of 94.32 days, give a 95% confidence interval for the failure
rate per day?

∗ poisson.test(x, T)$conf = returns Poisson 95% confidence interval for given x occurrence
over T time period

# define parameters
x <- 5; t <- 94.32; lambda <- x / t
# calculate confidence interval
round(lambda + c(-1, 1) * qnorm(.975) * sqrt(lambda / t), 3)

## [1] 0.007 0.099

# return accurate confidence interval from poisson.test
poisson.test(x, T = 94.32)$conf
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## [1] 0.01721254 0.12371005
## attr(,"conf.level")
## [1] 0.95

# small lambda simulations
lambdavals <- seq(0.005, 0.10, by = .01); nosim <- 1000; t <- 100
# calculate coverage using Poisson intervals
coverage <- sapply(lambdavals, function(lambda){

# calculate Poisson rates
lhats <- rpois(nosim, lambda = lambda * t) / t
# lower bound of 95% CI
ll <- lhats - qnorm(.975) * sqrt(lhats / t)
# upper bound of 95% CI
ul <- lhats + qnorm(.975) * sqrt(lhats / t)
# calculate percent of intervals that contain lambda
mean(ll < lambda & ul > lambda)

})
# plot CI results vs 95%
ggplot(data.frame(lambdavals, coverage), aes(x = lambdavals, y = coverage)) + geom_line(size = 2) + geom_hline(yintercept = 0.95)+ylim(0, 1.0)
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• as we can see above, for small values of λ = X/t, the confidence interval produced by the asymptotic
interval is not an accurate estimate of the actual 95% interval (not enough coverage)

• however, as t→∞, the interval becomes the true 95% interval

# small lambda simulations
lambdavals <- seq(0.005, 0.10, by = .01); nosim <- 1000; t <- 1000
# calculate coverage using Poisson intervals
coverage <- sapply(lambdavals, function(lambda){

# calculate Poisson rates
lhats <- rpois(nosim, lambda = lambda * t) / t
# lower bound of 95% CI
ll <- lhats - qnorm(.975) * sqrt(lhats / t)
# upper bound of 95% CI
ul <- lhats + qnorm(.975) * sqrt(lhats / t)
# calculate percent of intervals that contain lambda
mean(ll < lambda & ul > lambda)
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})
# plot CI results vs 95%
ggplot(data.frame(lambdavals, coverage), aes(x = lambdavals, y = coverage)) + geom_line(size = 2) + geom_hline(yintercept = 0.95) + ylim(0, 1.0)
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• as we can see from above, as t increases, the Poisson intervals become closer to the actual 95% confidence
intervals

Confidence Intervals - T Distribution(Small Samples)

• t confidence interval is defined as

Estimate± TQ× SEEstimate = X̄ ± tn−1S√
n

– TQ = quantile from T distribution
– tn−1 = relevant quantile
– t interval assumes data is IID normal so that

X̄ − µ
S/
√
n

follows Gosset’s t distribution with n− 1 degrees of freedom
– works well with data distributions that are roughly symmetric/mound shaped, and does not work

with skewed distributions
∗ skewed distribution → meaningless to center interval around the mean X̄
∗ logs/median can be used instead

– paired observations (multiple measurements from same subjects) can be analyzed by t interval of
differences

– as more data collected (large degrees of freedom), t interval → z interval
– qt(0.975, df=n-1) = calculate the relevant quantile using t distribution

# Plot normal vs t distributions
k <- 1000; xvals <- seq(-5, 5, length = k); df <- 10
d <- data.frame(y = c(dnorm(xvals), dt(xvals, df)),x = xvals,

dist = factor(rep(c("Normal", "T"), c(k,k))))
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g <- ggplot(d, aes(x = x, y = y))
g <- g + geom_line(size = 2, aes(colour = dist)) + ggtitle("Normal vs T Distribution")
# plot normal vs t quantiles
d <- data.frame(n= qnorm(pvals),t=qt(pvals, df),p = pvals)
h <- ggplot(d, aes(x= n, y = t))
h <- h + geom_abline(size = 2, col = "lightblue")
h <- h + geom_line(size = 2, col = "black")
h <- h + geom_vline(xintercept = qnorm(0.975))
h <- h + geom_hline(yintercept = qt(0.975, df)) + ggtitle("Normal vs T Quantiles")
# plot 2 graphs together
grid.arrange(g, h, ncol = 2)
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• William Gosset’s t Distribution (“Student’s T distribution”)

– test = Gosset’s pseudoname which he published under
– indexed/defined by degrees of freedom, and becomes more like standard normal as degrees of

freedom gets larger
– thicker tails centered around 0, thus confidence interval = wider than Z interval (more mass

concentrated away from the center)
– for small sample size (value of n), normalizing the distribution by X̄−µ

S/
√
n
→ t distribution, not

the standard normal distribution
∗ S = standard deviation may be inaccurate, as the std of the data sample may not be truly

representative of the population std
∗ using the Z interval here thus may produce an interval that is too narrow

Confidence Interval - Paired T Tests

• compare observations for the same subjects over two different sets of data (i.e. different times, different
treatments)

• the confidence interval is defined by
X̄1 − X̄2 ±

tn−1S√
n

where X̄1 represents the first observations and X̄2 the second set of observations
• t.test(difference) = performs group mean t test and returns metrics as results, which includes the

confidence intervals
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– t.test(g2, g1, paired = TRUE) = performs the same paired t test with data directly

• example

– the data used here is for a study of the effects of two soporific drugs (increase in hours of sleep
compared to control) on 10 patients

# load data
data(sleep)
# plot the first and second observations
g <- ggplot(sleep, aes(x = group, y = extra, group = factor(ID)))
g <- g + geom_line(size = 1, aes(colour = ID)) + geom_point(size =10, pch = 21, fill = "salmon", alpha = .5)
g
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# define groups
g1 <- sleep$extra[1 : 10]; g2 <- sleep$extra[11 : 20]
# define difference
difference <- g2 - g1
# calculate mean and sd of differences
mn <- mean(difference); s <- sd(difference); n <- 10
# calculate intervals manually
mn + c(-1, 1) * qt(.975, n-1) * s / sqrt(n)

## [1] 0.7001142 2.4598858

# perform the same test to get confidence intervals
t.test(difference)

##
## One Sample t-test
##
## data: difference
## t = 4.0621, df = 9, p-value = 0.002833
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
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## 0.7001142 2.4598858
## sample estimates:
## mean of x
## 1.58

t.test(g2, g1, paired = TRUE)

##
## Paired t-test
##
## data: g2 and g1
## t = 4.0621, df = 9, p-value = 0.002833
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.7001142 2.4598858
## sample estimates:
## mean of the differences
## 1.58

Independent Group t Intervals - Same Variance

• compare two groups in randomized trial (“A/B Testing”)
• cannot use the paired t test because the groups are independent and may have different sample sizes
• perform randomization to balance unobserved covariance that may otherwise affect the result
• t confidence interval for µy − µx is defined as

Ȳ − X̄ ± tnx+ny−2,1−α/2Sp

(
1
nx

+ 1
ny

)1/2

– tnx+ny−2,1−α/2 = relevant quantile
– nx + ny − 2 = degrees of freedom

– Sp

(
1
nx

+ 1
ny

)1/2
= standard error

– S2
p = {(nx − 1)S2

x + (ny − 1)S2
y}/(nx + ny − 2) = pooled variance estimator

∗ this is effectively a weighted average between the two variances, such that different sample
sizes are taken in to account

∗ For equal sample sizes, nx = ny, S2
p = S2

x+S2
y

2 (average of variance of two groups)
– Note: this interval assumes constant variance across two groups; if variance is different, use
the next interval

Independent Group t Intervals - Different Variance

• confidence interval for µy − µx is defined as

Ȳ − X̄ ± tdf ×

(
s2
x

nx
+
s2
y

ny

)1/2

– tdf = relevant quantile with df as defined below
– Note: normalized statistic does not follow t distribution but can be approximated through the

formula with df defined below

df =
(
S2
x/nx + S2

y/ny
)2(

S2
x

nx

)2
/(nx − 1) +

(
S2

y

ny

)2
/(ny − 1)
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∗
(
s2

x

nx
+ s2

y

ny

)1/2
= standard error

• Comparing other kinds of data

– binomial → relative risk, risk difference, odds ratio
– binomial → Chi-squared test, normal approximations, exact tests
– count → Chi-squared test, exact tests

• R commands

– t Confidence Intervals
∗ mean + c(-1, 1) * qt(0.975, n - 1) * std / sqrt(n)

· c(-1, 1) = plus and minus, ±
– Difference Intervals (all equivalent)

∗ mean2 - mean1 + c(-1, 1) * qt(0.975, n - 1) * std / sqrt(n)

· n = number of paired observations
· qt(0.975, n - 1) = relevant quantile for paired
· qt(0.975, nx + ny - 2) = relevant quantile for independent

∗ t.test(mean2 - mean1)
∗ t.test(data2, data1, paired = TRUE, var.equal = TRUE)

· paired = whether or not the two sets of data are paired (same subjects different observa-
tions for treatment) → TRUE for paired, FALSE for independent

· var.equal = whether or not the variance of the datasets should be treated as equal →
TRUE for same variance, FALSE for unequal variances

∗ t.test(extra ~ I(relevel(group, 2)), paired = TRUE, data = sleep)

· relevel(factor, ref) = reorders the levels in the factor so that “ref” is changed to the
first level → doing this here is so that the second set of measurements come first (1, 2 →
2, 1) in order to perform mean2 - mean1

· I(object) = prepend the class “AsIs” to the object
· Note: I(relevel(group, 2)) = explanatory variable, must be factor and have two levels
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Hypothesis Testing

• Hypothesis testing = making decisions using data

– null hypothesis (H0) = status quo
– assumed to be true → statistical evidence required to reject it for alternative or “research”

hypothesis (Ha)
∗ alternative hypothesis typically take form of >, < or 6=

– Results

Truth Decide Result
H0 H0 Correctly accept null
H0 Ha Type I error
Ha Ha Correctly reject null
Ha H0 Type II error

• α = Type I error rate

– probability of rejecting the null hypothesis when the hypothesis is correct
– α = 0.05 → standard for hypothesis testing
– Note: as Type I error rate increases, Type II error rate decreases and vice versa

• for large samples (large n), use the Z Test for H0 : µ = µ0

– Ha:
∗ H1 : µ < µ0
∗ H2 : µ 6= µ0
∗ H3 : µ > µ0

– Test statistic TS = X̄−µ0
S/
√
n

– Reject the null hypothesis H0 when
∗ H1 : TS ≤ Zα OR −Z1−α
∗ H2 : |TS| ≥ Z1−α/2
∗ H3 : TS ≥ Z1−α

– Note: In case of α = 0.05 (most common), Z1−α = 1.645 (95 percentile)
– α = low, so that when H0 is rejected, original model → wrong or made an error (low probability)

• For small samples (small n), use the T Test for H0 : µ = µ0

– Ha:
∗ H1 : µ < µ0
∗ H2 : µ 6= µ0
∗ H3 : µ > µ0

– Test statistic TS = X̄−µ0
S/
√
n

– Reject the null hypothesis H0 when
∗ H1 : TS ≤ Tα OR −T1−α
∗ H2 : |TS| ≥ T1−α/2
∗ H3 : TS ≥ T1−α

– Note: In case of α = 0.05 (most common), T1−α = qt(.95, df = n-1)
– R commands for T test:

∗ t.test(vector1 - vector2)
∗ t.test(vector1, vector2, paired = TRUE)
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· alternative argument can be used to specify one-sided tests: less or greater
· alternative default = two-sided

∗ prints test statistic (t), degrees of freedom (df), p-value, 95% confidence interval, and mean
of sample
· confidence interval in units of data, and can be used to intepret the practical significance

of the results

• rejection region = region of TS values for which you reject H0
• power = probability of rejecting H0

– power is used to calculate sample size for experiments

• two-sided tests → Ha : µ 6= µ0

– reject H0 only if test statistic is too larger/small
– for α = 0.05, split equally to 2.5% for upper and 2.5% for lower tails

∗ equivalent to |TS| ≥ T1−α/2
∗ example: for T test, qt(.975, df) and qt(.025, df)

– Note: failing to reject one-sided test = fail to reject two-sided

• tests vs confidence intervals

– (1− α)% confidence interval for µ = set of all possible values that fail to reject H0
– if (1− α)% confidence interval contains µ0, fail to reject H0

• two-group intervals/test

– Rejection rules the same
– Test H0: µ1 = µ2 → µ1 − µ2 = 0
– Test statistic:

Estimate−H0V alue

SEEstimate
= X̄1 − X̄2 − 0√

S2
1
n1

+ S2
2
n2

– R Command
∗ t.test(values ~ factor, paired = FALSE, var.equal = TRUE, data = data)

· paired = FALSE = independent values
· factor argument must have only two levels

• p values

– most common measure of statistical significance
– p-value = probability under the null hypothesis of obtaining evidence as extreme or more than

that of the obtained
∗ Given that H0 is true, how likely is it to obtain the result (test statistic)?

– attained significance level = smallest value for α for which H0 is rejected → equivalent to
p-value

∗ if p-value < α, reject H0
∗ for two-sided tests, double the p-values

– if p-value is small, either H0 is true AND the obeserved is a rare event OR H0 is false
– R Command

∗ p-value = pt(statistic, df, lower.tail = FALSE)
· lower.tail = FALSE = returns the probability of getting a value from the t distribution

that is larger than the test statistic
∗ Binomial (coin flips)

· probability of getting x results out of n trials and event probability of p = pbinom(x,
size = n, prob = p, lower.tail = FALSE)
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· two-sided interval (testing for 6=): find the smaller of two one-sided intervals (X < value,
X > value), and double the result

· Note: lower.tail = FALSE = strictly greater
∗ Poisson

· probability of getting x results given the rate r = ppois(x - 1, r, lower.tail =
FALSE)

· x - 1 is used here because the upper tail includes the specified number (since we want
greater than x, we start at x - 1)

· r = events that should occur given the rate (multiplied by 100 to yield an integer)
· Note: lower.tail = FALSE = strictly greater
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Power

• Power = probability of rejecting the null hypothesis when it is false (the more power the better)

– most often used in designing studies so that there’s a reasonable chance to detect the alternative
hypothesis if the alternative hypothesis is true

• β = probability of type II error = failing to reject the null hypothesis when it’s false
• power = 1− β
• example

– H0 : µ = 30→ X̄ ∼ N(µ0, σ
2/n)

– Ha : µ > 30→ X̄ ∼ N(µa, σ2/n)
– Power:

Power = P

(
X̄ − 30
s/
√
n

> t1−α,n−1 ; µ = µa

)
∗ Note: the above function depends on value of µa
∗ Note: as µa approaches 30, power approaches α

– assuming the sample mean is normally distributed, H0 is rejected when X̄−30
σ/
√
n
> Z1−α

– or, X̄ > 30 + Z1−α
σ√
n

• R commands:

– alpha = 0.05; z = qnorm(1-alpha) → calculates Z1−α
– pnorm(mu0 + z * sigma/sqrt(n), mean = mua, sd = sigma/sqrt(n), lower.tail =

FALSE) → calculates the probability of getting a sample mean that is larger than Z1−α
σ√
n
given

that the population mean is µa
∗ Note: using mean = mu0 in the function would = α

– Power curve behavior
∗ Power increases as mua increases → we are more likely to detect the difference in mua and
mu0

∗ Power increases as n increases → with more data, more likely to detect any alternative mua

library(ggplot2)
mu0 = 30; mua = 32; sigma = 4; n = 16
alpha = 0.05
z = qnorm(1 - alpha)
nseq = c(8, 16, 32, 64, 128)
mu_a = seq(30, 35, by = 0.1)
power = sapply(nseq, function(n)

pnorm(mu0 + z * sigma / sqrt(n), mean = mu_a, sd = sigma / sqrt(n),
lower.tail = FALSE)

)
colnames(power) <- paste("n", nseq, sep = "")
d <- data.frame(mu_a, power)
library(reshape2)
d2 <- melt(d, id.vars = "mu_a")
names(d2) <- c("mu_a", "n", "power")
g <- ggplot(d2,

aes(x = mu_a, y = power, col = n)) + geom_line(size = 2)
g
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• Solving for Power

– When testing Ha : µ > µ0 (or < or 6=)

Power = 1− β = P

(
X̄ > µ0 + Z1−α

σ√
n

;µ = µa

)
where X̄ ∼ N(µa, σ2/n)

– Unknowns = µa, σ, n, β
– Knowns = µ0, α
– Specify any 3 of the unknowns and you can solve for the remainder; most common are two cases

1. Given power desired, mean to detect, variance that we can tolerate, find the n to produce
desired power (designing experiment/trial)

2. Given the size n of the sample, find the power that is achievable (finding the utility of
experiment)

– Note: for Ha : µ 6= mu0, calculated one-sided power using z1−α/2; however, the power calculation
here exclusdes the probability of getting a large TS in the opposite direction of the truth, but this is
only applicable when µa and µ0 are close together

• Power Behavior

– Power increases as α becomes larger
– Power of one-sided test > power of associated two-sided test
– Power increases as µa gets further away from µ0
– Power increases as n increases (sample mean has less variability)
– Power increases as σ decreases (again less variability)
– Power usually depends only

√
n(µa−µ0)

σ , and not µa, σ, and n
∗ effect size = µa−µ0

σ → unit free, can be interpretted across settings

• T-test Power
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– for Gossett’s T test,

Power = P

(
X̄ − µ0

S/
√
n

> t1−α,n−1;µ = µa

)
∗ X̄−µ0

S/
√
n

does not follow a t distribution if the true mean is µa and NOT µ0 → follows a
non-central t distribution instead

– power.t.test = evaluates the non-central t distribution and solves for a parameter given all
others are specified

∗ power.t.test(n = 16, delta = 0.5, sd = 1, type = "one.sample", alt = "one.sided")$power
= calculates power with inputs of n, difference in means, and standard deviation
· delta = argument for difference in means
· Note: since effect size = delta/sd, as n, type, and alt are held constant, any distribution

with the same effect size will have the same power
∗ power.t.test(power = 0.8, delta = 0.5, sd = 1, type = "one.sample", alt =

"one.sided")$n = calculates size n with inputs of power, difference in means, and standard
deviation
· Note: n should always be rounded up (ceiling)
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Multiple Testing

• Hypothesis testing/significant analysis commonly overused
• correct for multiple testing to avoid false positives/conclusions (two key components)

1. error measure
2. correction

• multiple testing is needed because of the increase in ubiquitous data collection technology and analysis

– DNA sequencing machines
– imaging patients in clinical studies
– electronic medical records
– individualized movement data (fitbit)

Type of Errors

Actual H0 = True Actual Ha = True Total
Conclude H0 = True (non-significant) U T m−R
Conclude Ha = True (significant) V S R
Total m0 m−m0 m

• m0 = number of true null hypotheses, or cases where H0 = actually true (unknown)
• m−m0 = number of true alternative hypotheses, or cases where Ha = actually true (unknown)
• R = number of null hypotheses rejected, or cases where Ha = concluded to be true (measurable)
• m−R = number of null hypotheses that failed to be rejected, or cases where H0 = concluded to be

true (measurable)
• V = Type I Error / false positives, concludes Ha = True when H0 = actually True
• T = Type II Error / false negatives, concludes H0 = True when Ha = actually True
• S = true positives, concludes Ha = True when Ha = actually True
• U = true negatives, concludes H0 = True when H0 = actually True

Error Rates

• false positive rate = rate at which false results are called significant E[ Vm0
] → average fraction of

times that Ha is claimed to be true when H0 is actually true

– Note: mathematically equal to type I error rate → false positive rate is associated with a post-prior
result, which is the expected number of false positives divided by the total number of hypotheses
under the real combination of true and non-true null hypotheses (disregarding the “global null”
hypothesis). Since the false positive rate is a parameter that is not controlled by the researcher, it
cannot be identified with the significance level, which is what determines the type I error rate.

• family wise error rate (FWER) = probability of at least one false positive Pr(V ≥ 1)

• false discovery rate (FDR) = rate at which claims of significance are false E[VR ]

• controlling error rates (adjusting α)

– false positive rate
∗ if we call all P < α significant (reject H0), we are expected to get α×m false positives, where
m = total number of hypothesis test performed

∗ with high values of m, false positive rate is very large as well
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– family-wise error rate (FWER)
∗ controlling FWER = controlling the probability of even one false positive
∗ bonferroni correction (oldest multiple testing correction)

· for m tests, we want Pr(V ≥ 1) < α

· calculate P-values normally, and deem them significant if and only if P < αfewer = α/m

∗ easy to calculate, but tend to be very conservative
– false discovery rate (FDR)

∗ most popular correction = controlling FDR
∗ for m tests, we want E[VR ] ≤ α
∗ calculate P-values normally and sort some from smallest to largest → P(1), P(1), ..., P(m)

∗ deem the P-values significant if P(i) ≤ α× i
m

∗ easy to calculate, less conservative, but allows for more false positives and may behave strangely
under dependence (related hypothesis tests/regression with different variables)

– example
∗ 10 P-values with α = 0.20

• adjusting for p-values

– Note: changing P-values will fundamentally change their properties but they can be used directly
without adjusting /alpha

– bonferroni (FWER)
∗ P feweri = max(mPi, 1) → since p cannot exceed value of 1
∗ deem P-values significant if P feweri < α

∗ similar to controlling FWER

Example
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set.seed(1010093)
pValues <- rep(NA,1000)
for(i in 1:1000){

x <- rnorm(20)
# First 500 beta=0, last 500 beta=2
if(i <= 500){y <- rnorm(20)}else{ y <- rnorm(20,mean=2*x)}
# calculating p-values by using linear model; the [2, 4] coeff in result = pvalue
pValues[i] <- summary(lm(y ~ x))$coeff[2,4]

}
# Controls false positive rate
trueStatus <- rep(c("zero","not zero"),each=500)
table(pValues < 0.05, trueStatus)

## trueStatus
## not zero zero
## FALSE 0 476
## TRUE 500 24

# Controls FWER
table(p.adjust(pValues,method="bonferroni") < 0.05,trueStatus)

## trueStatus
## not zero zero
## FALSE 23 500
## TRUE 477 0

# Controls FDR (Benjamin Hochberg)
table(p.adjust(pValues,method="BH") < 0.05,trueStatus)

## trueStatus
## not zero zero
## FALSE 0 487
## TRUE 500 13
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Resample Inference

• Bootstrap = useful tool for constructing confidence intervals and caclulating standard errors for
difficult statistics

– principle = if a statistic’s (i.e. median) sampling distribution is unknown, then use distribution
defined by the data to approximate it

– procedures
1. simulate n observations with replacement from the observed data → results in 1 simulated

complete data set
2. calculate desired statistic (i.e. median) for each simulated data set
3. repeat the above steps B times, resulting in B simulated statistics
4. these statistics are approximately drawn from the sampling distribution of the true statistic of
n observations

5. perform one of the following
∗ plot a histogram
∗ calculate standard deviation of the statistic to estimate its standard error
∗ take quantiles (2.5th and 97.5th) as a confidence interval for the statistic (“bootstrap CI ”)

– example
∗ Bootstrap procedure for calculating confidence interval for the median from a data set of n

observations → approximate sampling distribution

# load data
library(UsingR); data(father.son)
# observed dataset
x <- father.son$sheight
# number of simulated statistic
B <- 1000
# generate samples
resamples <- matrix(

sample(x, # sample to draw frome
n * B, # draw B datasets with n observations each
replace = TRUE), # cannot draw n*B elements from x (has n elements) without replacement

B, n) # arrange results into n x B matrix
# (every row = bootstrap sample with n observations)

# take median for each row/generated sample
medians <- apply(resamples, 1, median)
# estimated standard error of median
sd(medians)

## [1] 0.76595

# confidence interval of median
quantile(medians, c(.025, .975))

## 2.5% 97.5%
## 67.18292 70.16488

# histogram of bootstraped samples
hist(medians)
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Histogram of medians
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• Note: better percentile bootstrap confidence interval = “bias corrected and accelerated interval” in
bootstrap package

• Permutation Tests

– procedures
∗ compare groups of data and test the null hypothesis that the distribution of the observations
from each group = same
· Note: if this is true, then group labels/divisions are irrelevant

∗ permute the labels for the groups
∗ recalculate the statistic

· Mean difference in counts
· Geometric means
· T statistic

∗ Calculate the percentage of simulations where the simulated statistic was more extreme
(toward the alternative) than the observed

– variations

Data type Statistic Test name
Ranks rank sum rank sum test
Binary hypergeometric prob Fisher’s exact test
Raw data ordinary permutation test

∗ Note: randomization tests are exactly permutation tests, with a different motivation
∗ For matched data, one can randomize the signs
∗ For ranks, this results in the signed rank test
∗ Permutation strategies work for regression by permuting a regressor of interest
∗ Permutation tests work very well in multivariate settings

– example
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∗ we will compare groups B and C in this dataset for null hypothesis H0 : there are no difference
between the groups
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• we will compare groups B and C in this dataset for null hypothesis H0 : there are no difference between
the groups

# subset to only "B" and "C" groups
subdata <- InsectSprays[InsectSprays$spray %in% c("B", "C"),]
# values
y <- subdata$count
# labels
group <- as.character(subdata$spray)
# find mean difference between the groups
testStat <- function(w, g) mean(w[g == "B"]) - mean(w[g == "C"])
observedStat <- testStat(y, group)
observedStat

## [1] 13.25

• the observed difference between the groups is 13.25
• now we changed the resample the lables for groups B and C

# create 10000 permutations of the data with the labels' changed
permutations <- sapply(1 : 10000, function(i) testStat(y, sample(group)))
# find the number of permutations whose difference that is bigger than the observed
mean(permutations > observedStat)

## [1] 0
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• we created 1000 permutations from the observed dataset, and found no datasets with mean differences
between groups B and C larger than the original data

• therefore, p-value is very small and we can reject the null hypothesis with any reasonable α levels
• below is the plot for the null distribution/permutations
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• as we can see from the black line, the observed difference/statistic is very far from the mean → likely 0
is not the true difference

– with this information, formal confidence intervals can be constructed and p-values can be calculated
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