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Introduction to Regression

o linear regression/linear models — go to procedure to analyze data

e Francis Galton invented the term and concepts of regression and correlation

he predicted child’s height from parents height

e questions that regression can help answer

prediction of one thing from another

find simple, interpretable, meaningful model to predict the data

quantify and investigate variations that are unexplained or unrelated to the predictor — residual
variation

quantify the effects of other factors may have on the outcome
assumptions to generalize findings beyond data we have — statistical inference
regression to the mean (see below)

Notation

o regular letters (i.e. X, Y) = generally used to denote observed variables

o Greek letters (i.e. p, o) = generally used to denote unknown variables that we are trying to estimate

e X1,X5,...,X, describes n data points

e X, Y = observed means for random variables X and YV’
e (g, B1 = estimators for true values of 3y and [y

Empirical/Sample Mean

e empirical mean is defined as

mean of X; =0

Empirical/Sample Standard Deviation & Variance

e empirical variance is defined as

1 & . 1 . >
92 — — Z(Xi - X)*= — <Z X? - nX2> <« shortcut for calculation
i=1 i=1

« empirical standard deviation is defined as S = v/52

average squared distances between the observations and the mean
has same units as the data

o scaling the random variables is defined as X;/S

standard deviation of X;/S =1



Normalization

o normalizing the data/random variable is defined

X;— X
S

Z; =

— empirical mean = 0, empirical standard deviation = 1

— distribution centered around 0 and data have units = # of standard deviations away from the
original mean

*x example: Z; = 2 means that the data point is 2 standard deviations larger than the original
mean

e normalization makes non-comparable data comparable

Empirical Covariance & Correlation

o Let (X;,Y;) = pairs of data
e empirical covariance is defined as

1 < - _ 1 - __
Cov(X,Y) = — ;(Xi XY -Y) = — (ZlXY - nxy>
— has units of X x units of Y
e correlation is defined as Cou(X.Y)
ov
Cor(X,)Y) = —r——~
OT( ’ ) Sm Sy
where S, and S, are the estimates of standard deviations for the X observations and Y observations,

respectively

— the value is effectively the covariance standardized into a unit-less quantity

— Cor(X,Y)=Cor(Y,X)

- —-1<Cor(X,Y)<1

— Cor(X,Y)=1and Cor(X,Y) = —1 only when the X or Y observations fall perfectly on a positive
or negative sloped line, respectively

— Cor(X,Y) measures the strength of the linear relationship between the X and Y data, with
stronger relationships as Cor(X,Y’) heads towards -1 or 1

— Cor(X,Y) = 0 implies no linear relationship



Dalton’s Data and Least Squares

o collected data from 1885 in UsingR package

o predicting children’s heights from parents’ height

« observations from the marginal/individual parent/children distributions
 looking only at the children’s dataset to find the best predictor

— “middle” of children’s dataset — best predictor
— “middle” — center of mass — mean of the dataset

x Let Y; = height of child ¢ for i = 1,...,n = 928, the “middle” = p such that

n

> (v —p?

=1

% p =Y for the above sum to be the smallest — least squares = empirical mean

— Note: manipulate function can help to show this

# load necessary packages/install if needed
library(ggplot2); library(UsingR); data(galton)
# function to plot the histograms
myHist <- function(mu){
# calculate the mean squares
mse <- mean((galton$child - mu)"~2)
# plot histogram
g <- ggplot(galton, aes(x = child)) + geom_histogram(fill = "salmon",
colour = "black", binwidth=1)
# add vertical line marking the center value mu
g <- g + geom_vline(xintercept = mu, size = 2)
g <- g + ggtitle(paste("mu = ", mu, ", MSE = ", round(mse, 2), sep = ""))
g
}

# manipulate allows the user to change the wvariable mu to see how the mean squares changes
#  library(manipulate); manipulate(myHist(mu), mu = slider(62, 74, step = 0.5))]

# plot the correct graph

myHist (mean(galton$child))

mu = 68.08846982/5862, MSE = 6.33

child

e in order to visualize the parent-child height relationship, a scatter plot can be used



o Note: because there are multiple data points for the same parent/child combination, a third dimension
(size of point) should be used when constructing the scatter plot

library(dplyr)

# constructs table for different combination of parent-child height
freqData <- as.data.frame(table(galton$child, galton$parent))

names (freqData) <- c("child (in)", "parent (in)", "freq")

# convert to numeric wvalues

fregData$child <- as.numeric(as.character(freqData$child))
freqData$parent <- as.numeric(as.character(freqData$parent))

# filter to only meaningful combinations

g <- ggplot(filter(freqData, freq > 0), aes(x = parent, y = child))
g <- g + scale_size(range = c(2, 20), guide = "none" )
# plot grey circles slightly larger than data as base (achieve an outline effect)
g <- g + geom_point(colour="grey50", aes(size = freq+10, show_guide = FALSE))
# plot the accurate data points
g <- g + geom_point(aes(colour=freq, size = freq))
# change the color gradient from default to lightblue -> $white
g <- g + scale_colour_gradient(low = "lightblue", high="white")
g
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Derivation for Least Squares = Empirical Mean (Finding the Minimum)

o Let X; = regressor/predictor, and Y; = outcome/result so we want to minimize the the squares:

n

S (¥ - py?

i=1
e Proof is as follows

n

Z(Yi —p)?= Z
>

(Y; =Y +Y — p)? < added + Ywhich is adding 0 to the original equation

(expanding the terms) =Y (Y; —Y)? +2 Z Y, = Y)Y —p) + Z Y; = Y), (Y — p) are the terms
i=1 i=1 i=1
(simplifying) = Z(Y Y)? 4 2(Y — p) Z )+ Z Y — 1) does not depend on i

i=1 i=1 i=

1
n n

(simplifying) = Z(Y Y)2+2(Y — p) Z Yi—nY)+ > (Y —p)? < Z Y is equivalent to nY
i=1 i=1 i=1 i=1

(simplifying) = Z(Yl —-Y)?+ Z(Y —n)? <= ZY} —nY = 0 since ZYi =nY
i i i=1 i=1

=1
Z(Y; —u)? > Z(Y; ~Y): <= Z(Y — p)? is always > 0 so we can take it out to form the inequality

=1 =1 i=1

— because of the inequality above, to minimize the sum of the squares >;", (V; — u)?, Y must be
equal to u

e An alternative approach to finding the minimum is taking the derivative with respect to pu

Ao, (Vi — w)?)
dp

= (0 < setting this equal to 0 to find minimum

-2 Z(YZ — ) = 0 < divide by -2 on both sides and move p term over to the right
i=1

Z Y, = Z 1 <= for the two sums to be equal, all the terms must be equal
i=1

Yi=u



Regression through the Origin

o Let X; = parents’ heights (regressor) and Y; = children’s heights (outcome)
o find a line with slope § that passes through the origin at (0,0)

Y, = X

such that it minimizes
n

> (v - XiB)?

i=1

o Note: it is generally a bad practice forcing the line through (0, 0)

(0|°\

o Centering Data/Gaussian Elimination

— Note: this is different from regression through the origin, because it is effectively moving the

regression line

— subtracting the means from the X;s and Y;s moves the origin (reorienting the axes) to the center
of the data set so that a regression line can be constructed

— Note: the line constructed here has an equivalent slope as the result from linear regression with

intercept

y X
* ¥ VS
¥ 4
j X
L Y % lv\o

(o) © %



Derivation for /3

e Let Y =X, and B = estimate of 3, the slope of the least square regression line

n

Z(Yi - X,;B)* =

i=1

M=

~ ~ 2 ~
[(YZ - X.p) + (Xip — Xlﬂ)} < added + X3 is effectively adding zero
1

o
Il

(expanding the terms) =

[M]=

(Y; = XiB) +2>_(Yi = XiB)(Xiff = Xif) + Y _(Xi — Xi9)’

1 i=1 =1

(Vi = XiB)? +2> (Vi — XiB)(XiB — Xif3) <= Z X, — X;3)? is always positive
=1

i=1

.
Il

n

> (Vi - Xip)? >

i=1 =1

NE

«
I

(ignoring the second term for now, for B to be the minimizer of the squares,
the following must be true)

n

Z(Y XZB Z (Y, — X; B < every other [ value creates a least square criteria that is > B
i=1 i=1

(this means) = QZ(YZ- — X:B)(Xif—Xi8) =0
i=1

(simplifying) = Z(Yz — X;B)Xi(3—B) =0« (3 — ) does not depend on i

i=1

(simpli fying) = Y (Vi — X;8)X; =
i=1

. A A Z?:l }/ZX'L —
(solving for B) = 3 = ST X2 =4

e example
— Let Xl,Xg,...,Xn =1

n

S - X6 i

i=1
A " Y X, Y, Y; _
= ﬁ _ Zlil 5 — 22;1 Zz 1 =Y
o1 X; dima 1 n

— Note: this is the result from our previous derivation for least squares = empirical mean
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Finding the Best Fit Line (Ordinary Least Squares)

e best fitted line for predictor, X, and outcome, Y is derived from the least squares

Zn:{yi — (Bo + B X;)}?

VX

2 m&’? s O\Z
(o

(ol 07

e each of the data point contributes equally to the error between the their locations and the regression
line — goal of regression is to minimize this error

Least Squares Model Fit

e model fit =Y = By + $1 X through the data pairs (X;,Y;) where Y; as the outcome
— Note: this is the model that we use to guide our estimated best fit (see below)

« best fit line with estimated slope and intercept (X as predictor, Y as outcome) —

Y =B+ X
where Sy
b= Cor(v. X) g =¥ — /X

— [slope] By has the units of Y/X
x Cor(Y,X) = unit-less
* Sd(Y) = has units of Y’
* Sd(X) = has units of X
— [intercept] By has the units of Y’
— the line passes through the point (X,Y)
* this is evident from equation for 5y (rearrange equation)
o best fit line with X as outcome and Y as predictor has slope, 3; = Cor(Y, X)Sd(X)/Sd(Y).
o slope of best fit line = slope of best fit line through the origin for centered data (X; — X,Y; —Y)
o slope of best fit line for normalized the data, %, ?T_YY)} = Cor(Y,X)

11



Derivation for 3y and

o Let Y =g+ 51X, and BO / 31 = estimates fy/f1, the intercept and slope of the least square regression
line, respectively

n n

Z(Yz —fo— A1 Xi)? = Z(Yz* —Bo)? where Y =Y; - 1 X,

=1 =1

solution for Z(Yz* —Bo)? =B = Zz:nl i Di1 - B
i=1
R Y, "X,
= Bo = i ¥ B i1
n n
= BO =Y — ﬁlX

:Z[Yi—f(,ﬂlf whereY; =Y; - Y, X; =X, — X

; YLK (M -Y)(XG - X)
- ,61 - Z?zl Xi2 - E?:l(Xi - X)Q
= B (YZ__)(XZ__X)/(n—l):COU(Y,X)
S (X - X)2/(n—1)  Var(X)
= 1 =Cor(Y,X) 538?)

Examples and R Commands

. BO and /3’1 can be manually calculated through the above formulas
e coef(Im(y ~ x))) = R command to run the least square regression model on the data with y as the
outcome, and x as the regressor

— coef () = returns the slope and intercept coefficients of the 1m results

# outcome

y <- galton$child

# regressor

x <- galton$parent

# slope

betal <- cor(y, x) * sd(y) / sd(x)

# intercept

betal0 <- mean(y) - betal * mean(x)

# results are the same as using the lm command
results <- rbind("manual" = c(betal, betal), "Im(y ~ x)" = coef(lm(y ~ x)))
# set column names

colnames(results) <- c("intercept", "slope")

# print results

results

12



## intercept slope
## manual 23.94153 0.6462906
## 1m(y ~ x) 23.94153 0.6462906

o slope of the best fit line = slope of best fit line through the origin for centered data
e Im(y ~ x - 1) = forces a regression line to go through the origin (0, 0)

# centering y

yc <- y - mean(y)

# centering

xc <- x - mean(x)

# slope

betal <- sum(yc * xc) / sum(xc ~ 2)

# results are the same as using the lm command

results <- rbind("centered data (manual)" = betal, "lm(y ~ x)" = coef(lm(y ~ x))[2],
"Im(yc ~ xc - 1)" = coef(Im(yc ~ xc - 1)) [1])

# set column names

colnames(results) <- c("slope")

# print results

results

# slope
## centered data (manual) 0.6462906
## 1m(y ~ x) 0.6462906
## 1m(yc ~ xc - 1) 0.6462906

o slope of best fit line for normalized the data = Cor(Y, X)

# mormalize y

yn <- (y - mean(y))/sd(y)

# mormalize

xn <- (x - mean(x))/sd(x)

# compare correlations

results <- rbind("cor(y, x)" = cor(y, x), "cor(yn, xn)" = cor(yn, xn),
"slope" = coef(lm(yn ~ xn))[2])

# print results

results

## xn
## cor(y, x) 0.4587624
## cor(yn, xn) 0.4587624
## slope 0.4587624

o geom_smooth(method = "Im", formula = y~x) function in ggplot2 = adds regression line and con-
fidence interval to graph

— formula = y~x = default for the line (argument can be eliminated if y~x produces the line you

want)

# constructs table for different combination of parent-child height
freqData <- as.data.frame(table(galton$child, galton$parent))
names (freqData) <- c("child (in)", "parent (in)", "freq")

13



# convert to numeric wvalues
freqData$child <- as.numeric(as.character(freqData$child))
freqData$parent <- as.numeric(as.character(freqData$parent))

g <- ggplot(filter(freqData, freq > 0), aes(x = parent, y = child))

g <- g + scale_size(range = c(2, 20), guide = "none" )

g <- g + geom_point(colour="grey50", aes(size = freq+10, show_guide = FALSE))
g <- g + geom_point(aes(colour=freq, size = freq))

g <- g + scale_colour_gradient(low = "lightblue", high="white")

g <- g + geom_smooth(method="1m", formula=y~x)

g

o
o
0o
o

Oo
o freq
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Regression to the Mean

o first investigated by Francis Galton in the paper “Regression towards mediocrity in hereditary stature”
The Journal of the Anthropological Institute of Great Britain and Ireland , Vol. 15, (1886)
e regression to the mean was invented by Fancis Galton to capture the following phenomena

— children of tall parents tend to be tall, but not as tall as their parents

— children of short parents tend to be short, but not as short as their parents

— parents of very short children, tend to be short, but not as short as their child
— parents of very tall children, tend to be tall, but not as tall as their children

e in thinking of the extremes, the following are true

— P(Y < z|X = z) gets bigger as x heads to very large values

* in other words, given that the value of X is already very large (extreme), the chance that the
value of Y is as large or larger than that of X is small (unlikely)

— similarly, P(Y > z|X = z) gets bigger as « heads to very small values

* in other words, given that the value of X is already very small (extreme), the chance that the
value of Y is as small or smaller than that of X is small (unlikely)

e when constructing regression lines between X and Y, the line represents the intrinsic relationship
(“mean”) between the variables, but does not capture the extremes (“noise”)

— unless Cor(Y, X) = 1, the regression line or the intrinsic part of the relationship between variables
won’t capture all of the variation (some noise exists)

Dalton’s Investigation on Regression to the Mean

e both X, child’s heights, and Y, parent’s heights, are normalized so that they mean of 0 and variance
of 1

« regression lines must pass (X,Y) or (0,0) in this case

o slope of regression line = Cor(Y, X) regardless of which variable is the outcome/regressor (because
standard deviations of both variables = 1)

— Note: however, for both regression lines to be plotted on the same graph, the second line’s slope
must be 1/Cor(Y, X) because the two relationships have flipped axes

# load father.son data

data(father.son)

# mormalize son's height

y <- (father.son$sheight - mean(father.son$sheight)) / sd(father.son$sheight)
# normalize father's height

x <- (father.son$fheight - mean(father.son$fheight)) / sd(father.son$fheight)
# calculate correlation

rho <- cor(x, y)

plot the relationship between the two

ggplot(data.frame(x = x, y = y), aes(x = x, y = y))

= g + geom_point(size = 3, alpha = .2, colour = "black")

= g + geom_point(size = 2, alpha = .2, colour = "red")

g + xlim(-4, 4) + ylim(-4, 4)

reference line for perfect correlation between

variables (data points will like on diagonal line)

= g + geom_abline(position = "identity")

1f there is no correlation between the two wvariables,

the data points will lie on horizontal/vertical lines

#H W0 H #0308 08 03
I
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= g + geom_vline(xintercept = 0)

g + geom_hline(yintercept = 0)

lot the actual correlation for both

g + geom_abline(intercept = 0, slope = rho, size = 2)

= g + geom_abline(intercept = 0, slope = 1 / rho, size = 2)
add appropriate labels

g + xlab("Father's height, normalized")

g + ylab("Son's height, normalized")

g + geom_text(x = 3.8, y = 1.6, label="x~y", angle = 25) +
geom_text(x = 3.2, y = 3.6, label="cor(y,x)=1", angle = 35) +
geom_text(x = 1.6, y 8, label="y~x", angle = 60)

s

3.
3.

B

Son’'s height, normalized

I I I
-4 -2 0 2 4
Father's height, normalized
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Statistical Linear Regression Models

e goal is use statistics to draw inferences — generalize from data to population through models
e probabilistic model for linear regression

Y = Bo+ 51X + €

where ¢; represents the sampling errors and is assumed to be iid N (0, 02)
o this model has the following properties

— E[Y; | Xi = x;] = E[Bo] + E[p12i] + Ele;] = pi = Bo + prv;
— Var(Y; | X; = x;) = Var(Bo + Brxi) + Var(e;) = Var(e;) = o
* fo + frx; = line = constant/no variance
e it can then be said to have Y; as independent N(u,0?), where = By + 12; <— likelihood equivalent
model
— likelihood = given the outcome, what is the probability?
* in this case, the likelihood is as follows

L£(Bo, pr,0) = li[ {(27T<72)‘1/2 exp (—2;(% - ui)2> }

i1=1

where p; = By + f12;
x above is the probability density function of n samples from the normal distribution —
this is because the regression line is normally distributed due to ¢;

— maximum likelihood estimator (MLE) = most likely estimate of the population parame-
ter /probability

* in this case, the maximum likelihood = -2 minimum natural log (In, base e) likelihood

1 n
—2log L(Bo, B1,0) = nlog(2ma?) + o z:(yz — ;)?
i=1

since everything else is constant, minimizing this function would only depend on Z?Zl (yi —
pi)?, which from our previous derivations yields fi; = 8o + (12

* maximum likelthood estimate = pu; = By + 1z

Interpreting Regression Coefficients

« for the linear regression line
Yi=0o+ /X +e

MLE for 8y and (3, are as follows

by = Cor(Y, X) gjg()) Bo=Y — X

o By = expected value of the outcome/response when the predictor is 0
EY|X =0]=p5o+ 51 x0=7

— Note: X = 0 may not always be of interest as it may be impossible/outside of data range (i.e
blood pressure, height etc.)
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— it may be useful to move the intercept at times

Yi=080+ 51X+ ¢
=fo+abi+ (X —a)+e
= fo+ B1(Xi —a)+e wherefy = Bo + ap

— Note: shifting X values by value a changes the intercept, but not the slope
— often, a is set to X so that the intercept is interpreted as the expected response at the average X
value

e 1 = expected change in outcome/response for a 1 unit change in the predictor
EY | X=a+1-EY | X=a]=p+pi(x+1)— (Bo+ biz) = b
— sometimes it is useful to change the units of X
Yi =00+ 55X +e
= Bo + %(Xia) +é€
= Bo + B1(Xa) + €

— multiplication of X by a factor a results in dividing the coefficient by a factor of a
— example:

* X = height in m
* Y = weight in kg
* 31 has units of kg/m
* converting X to cm = multiplying X by 100<™*
* this mean (31 has to be divided by 100™* for the correct units.
cm kg 1 m 61\ kg
X m x 100H = (100 X)em and Blﬁ X 100 am = <100) o

e 95% confidence intervals for the coefficients can be constructed from the coefficients themselves and
their standard errors (from summary(1m))

— use the resulting intervals to evaluate the significance of the results
Use Regression Coefficients for Prediction
o for observed values of the predictor, X1, X, ..., X, the prediction of the outcome/response is as follows

fii = Yi=Fo+ /X

where p; describes a point on the regression line

Example and R Commands

e diamond dataset from UsingR package

— diamond prices in Singapore Dollars, diamond weight in carats (standard measure of diamond
mass, 0.2g)

e Im(price ~ I(carat - mean(carat)), data=diamond) = mean centered linear regression

— Note: arithmetic operations must be enclosed in I() to work

18



e predict(fitModel, newdata=data.frame(carat=c(0, 1, 2))) = returns predicted outcome from
the given model (linear in our case) at the provided points within the newdata data frame

— if newdata is unspecified (argument omitted), then predict function will return predicted values
for all values of the predictor (x variable, carat in this case)

x Note: newdata has to be a dataframe, and the values you would like to predict (v variable,
carat in this case) has to be specified, or the system won’t know what to do with the provided
values

e summary(fitModel) = prints detailed summary of linear model
e example

# standard linear regression for price vs carat
fit <- lm(price ~ carat, data = diamond)

# intercept and slope

coef (fit)

## (Intercept) carat
## -259.6259 3721.0249

# mean-centered Tegression
fit2 <- 1m(price ~ I(carat - mean(carat)), data = diamond)
# intercept and slope

coef (fit2)
#it (Intercept) I(carat - mean(carat))
#it 500.0833 3721.0249

# regression with more granular scale (1/10th carat)
fit3 <- 1m(price ~ I(carat * 10), data = diamond)

# intercept and slope

coef (fit3)

##  (Intercept) I(carat * 10)
## -259.6259 372.1025

# predictions for 3 walues
newx <- c(0.16, 0.27, 0.34)

# manual calculations
coef (fit) [1] + coef(fit)[2] * newx

## [1] 335.7381 745.0508 1005.5225

# prediction using the predict function
predict(fit, newdata = data.frame(carat = newx))

## 1 2 3
## 335.7381 745.0508 1005.5225

e interpretation

— we expect 3721.02 (SIN) dollar increase in price for every carat increase in mass of diamond
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— or 372.1 (SIN) dollar increase in price for every 1/10 carat increase in mass of diamond
e prediction

— for 0.16, 0.27, and 0.34 carats, we predict the prices to be 335.74, 745.05, 1005.52 (SIN) dollars

# plot the data points
plot(diamond$carat, diamond$price, xlab = "Mass (carats)", ylab = "Price (SIN $)",
bg = "lightblue", col = "black", cex = 1.1, pch = 21,frame FALSE)

# plot linear regression line

abline(fit, lwd = 2)

# plot predictions for every walue of carat (in red)

points(diamond$carat, predict(fit), pch = 19, col = "red")

# add guidelines for predictions for 0.16, 0.27, and 0.34

lines(c(0.16, 0.16, 0.12), c(200, coef(fit)[1] + coef(fit)[2] * 0.16,
coef (fit) [1] + coef(fit)[2] * 0.16))

lines(c(0.27, 0.27, 0.12), c(200, coef(fit) [1] + coef(fit)[2] * 0.27,
coef (fit) [1] + coef(fit)[2] * 0.27))

lines(c(0.34, 0.34, 0.12), c(200, coef(fit)[1] + coef(fit)[2] * 0.34,
coef (fit) [1] + coef(fit)[2] * 0.34))

# add text labels

text (newx+c(0.03, 0, 0), rep(250, 3), labels = newx, pos = 2)

o ©)
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o
—
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» 8 Q
Z o0} o)
n
N 8 |
s o o
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g —
o
o .16 0.27 0.34
O —
I3V I I I I I
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Mass (carats)
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Derivation for Maximum Likelihood Estimator

e Note: this derivation is for the mazimum likelihood estimator of the mean, u, of a normal distribution
as it is the basis of the linear regression model
e linear regression model
Yi=0F +5Xi+e
follows a normal distribution because ¢; ~ N(0,0?)
o for the above model, E[Y;] = p; = o + f1X; and Var(Y;) = o2

f’o?‘)( oo Jefiante
i Dok GV

volv

o the probability density function (pdf) for an outcome x from the normal distribution is defined as

1 1
f(x | p,o?) = (2m0?) /2eXp( % 5 (Vi — 1) )

¢ the corresponding pdf for n iid normal random outcomes z1, ..., z, is defined as

- _ 1
f@r, . | po®) =[] (2m0?) 1/2€Xp< 557 Wi — 1) )
i=1
which is also known as the likelihood function, denoted in this case as L(u, o)
e to find the maximum likelihood estimator (MLE) of the mean, p, we take the derivative of the
likelihood £ with respect to p — ‘%

e since derivatives of products are qulte complex to compute, taking the log (base e) makes the calculation
much simpler
— log properties:
* log(AB) = log(A) + log(B)
* log(AP) = Blog(A)
— because log is always increasing and monotonic, or preserves order, finding the maximum MLE
= finding th maximum of log transformation of MLE
e -2 log of likelihood function

n

1 1
log(L(p,0)) = Z ~5 log(2m0?) — ﬁ(yi — 113)* <= multiply -2 on both sides
i=1

1
—2log(L Zlog (2mo?) ( — 113)* <= 0 does not depend on i
1 n
—2log(L(p, o)) = nlog(2mo?) —2 E — p5)?

21



e minimizing -2 log likelihood is computationally equivalent as maximizing log likelihood

1 10> (yi — pi)?
Olog(£(u,0)) = — 2=y i = 1) = (0 < setting this equal to 0 to find minimum
o o2 ou

2

5 ) (i — pi) = 0 <= divide by — 2/0? on both sides

=

I

Il
_

g
[

(yi — i) = 0 <= move p term over to the right

I

@
Il
-

n n
Z Yi = Z w; < for the two sums to be equal, all the terms must be equal
i=1 i=1

Yi = W

e in the case of our linear regression, u; = By + 51 X; so

OL(1,0)) _ IL (BB, o))
ou o
MLE = Y; = p;

i = Bo + B1X;
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Residuals

e Residual, e; = difference between the observed and predicted outcome
e =YY,

— Or, vertical distance between observed data point and regression line

— Least squares minimizes ) ., e?

e ¢; can be interpreted as estimates of the regression error, €;
o ¢; can also be interpreted as the outcome (Y) with the linear association of the predictor (X) removed

— or, “Y adjusted for X”
o Ele;] = 0 — this is because the mean of the residuals is expected to be 0 (assumed Gaussian distribution)

— the Gaussian distribution assumption also implies that the error is NOT correlated with any
predictors
— mean(fitModel$residuals) = returns mean of residuals — should equal to 0
— cov(fit$residuals, predictors) = returns the covariance (measures correlation) of residuals
and predictors — should also equal to 0
e > e; =0 (if an intercept is included) and Y"1, e;X; = 0 (if a regressor variable X is included)
o for standard linear regression model
— positive residuals = above the line
— negative residuals = below

o residuals/residual plots can highlight poor model fit

Estimating Residual Variation

o residual variation measures how well the regression line fit the data points
o MLE of variance, o2, of the linear model = %Z?:l e? or the average squared residual/mean
squared error

— the square root of the estimate, o, = root mean squared error (RMSE)

o however, a more common approach is to use

— n — 2 is used instead of n to make the estimator unbiased — E[6?%] = o>

— Note: the -2 is accounting for the degrees of freedom for intercept and slope, which had to be
estimated

e deviance(fitModel) = calculates sum of the squared error/residual for the linear model/residual
variation

e summary(fitModel)$sigma = returns the residual variation of a fit model or the unbiased RMSE

— summary (fitModel) = creates a list of different parameters of the fit model

# get data

y <- diamond$price; x <- diamond$carat; n <- length(y)

# linear fit

fit <- Im(y ~ x)

# calculate residual wvariation through summary and manual

rbind("from summary" = summary(fit)$sigma, "manual" =sqrt(sum(resid(fit)~2) / (n - 2)))
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## [,1]
## from summary 31.84052
## manual 31.84052

Total Variation, R?, and Derivations

« total variation = residual variation (variation after removing predictor) + systematic/regression
variation (variation explained by regression model)

n n

ST -V =3 -9+ Y (V- V)2
1=1

=1 =1

o R? = percent of total variability that is explained by the regression model

,  regression variation Y, (Y; —Y)?

~ total variation " (V; —Y)2
B residual variation S (Y — ?1)2
total variation S (Y —Y)2

e« 0K<R2<L1
o R? = sample correlation squared

— cor(outcome, predictor = calculates the correlation between predictor and outcome — the
same as calculating R?

o R? can be a misleading summary of model fit

— deleting data — inflate R?

— adding terms to a regression model — always increases R?

— example (anscombe) demonstrates the fallacy of R? through the following
* basically same mean and variance of X and Y
* identical correlations (hence same R?)
* same linear regression relationship

« relationship between R? and r
Correlation between X and Y = r = Cor(Y, X)
R2 _ Z:l:l(ﬁ B }:/)2
Y (Yi—Y)?
recall = (Y; = Y) = B1(X; — X)
_ 32 Z?:1(Xi — ):02

bstituting(V; —Y)) =
(SU STITU an( )) 1 ZZTL:I(K _ Y)Q

- Sd(Y)

recall = 1 = Cor(Y, X)Sd(X)
L Var(Y) =30, (Xi - X)?

- 2 i=1
(substituting3) = Cor(Y, X) Var(X) X Z?:l(}/i —Y)2

recallVar(Y) = Z(Y’ ~Y)andVar(X) = Z(XZ — X)?
=1 =1
(simpli fying) = R* = Cor(Y, X)?
Or R? = 72
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o total variation derivation

First, we know that ¥ = BO + BlX'
(transforming) = Bo=Y - X

We also know that Y; = /3’0 + BlXi
Next, the residual = (Y; — }A/Z) =Y, — Bo— P X;

(substituting o) =Y — (Y — S X) — p1.X;
(transforming) = (Y; = Vi) = (V; = Y) — 1 (X; — X)

Next, the regression difference = (V; = Y) = o — S X; — Y
(substituting BO) =Y - 5hX-HXi-Y
(transforming) = (Y; = Y) = (X, — X)
Total Variation = Z(K ~Y) = Z(Y’ — Y4+ Y, - Y)? < (adding +Y;)
i=1 i=1
(expanding) = S (Y — V)2 +2 3 (% — ) (Vi — V) + S (Vi — V)2
i=1 i=1 i=1

Looking at Z(YZ —Y)(Y; -Y)
i=1

(substituting (Y; = Y2), (Vi = V) = 3 | (i = V) = u(X: = X))

(substituting Y, }7) = (Y; - 37) = (30 + BlXi) - (BO + 31)2)
(simplifying) = (Y;i = Y) = B (Xi — X)

n

(substituting (Y; —Y)) = B% Z(XZ - X)?— B% Z(Xz ~ X)?

=1 =1
= (Vi-Y)(¥i-Y)=0
i=1
Going back to Y (Y; = V)2 = (Vi = V)2 +2) (V; = V)(V; = V) + > _(V; - ¥)?
i=1 i=1 i=1 i=1
(since second term = 0) = Z(K ~Y)? = Z:(Yz — V)% + Z(Y/z -Y)?
i=1 i=1 i=1
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Example and R Commands

e resid(fitModel) or fitModel$residuals = extracts model residuals from the fit model (Im in our
case) — list of residual values for every value of X
o summary(fitModel)$r.squared = return R? value of the regression model

# load multiplot function

source ("multiplot.R")

# get data

y <- diamond$price; x <- diamond$carat; n <- length(y)

# linear regression

fit <- lm(y ~ x)

# calculate restdual

e <- resid(fit)

# calculate predicted values

yhat <- predict(fit)

# create 1 = 2 panel plot

par (mfrow=c(1, 2))

# plot residuals on regression line

plot(x, y, xlab = "Mass (carats)", ylab = "Price (SIN $)", bg = "lightblue",
col = "black", cex = 2, pch = 21,frame = FALSE,main = "Residual on Regression Line")

# draw linear regression line

abline(fit, lwd = 2)

# draw red lines from data points to regression line

for (i in 1 : n){lines(c(x[i], x[i]), c(y[i], yhat[i]l), col = "red" , lwd = 2)}

# plot residual vs x

plot(x, e, xlab = "Mass (carats)", ylab = "Residuals (SIN $)", bg = "lightblue",
col = "black", cex = 2, pch = 21,frame = FALSE,main = "Residual vs X")

# draw horizontal line

abline(h = 0, 1lwd = 2)

# draw red lines from residual to = axis

for (i in 1 : n){lines(c(x[i], x[il), c(el[il, 0), col = "red" , 1lwd = 2)}

Residual on Regression Line Residual vs X
o
8 » o
& z ©
Z 7] 0
2 9w o o
s S - T %
O © S
o S 5 ®
o — 8 w) —
04
o
S | | | | | | | | |
0.15 0.25 0.35 0.15 0.25 0.35
Mass (carats) Mass (carats)

o mnon-linear data/patterns can be more easily revealed through residual plots
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# create sin wave pattern
x <- runif (100, -3, 3); y <- x + sin(x) + rnorm(100, sd = .2);
# plot data + Tegression

g <- ggplot(data.frame(x = x, y = y), aes(x = x, y = y)) +
geom_smooth(method = "Im", colour = "black") +
geom_point(size = 3, colour = "black", alpha = 0.4) +
geom_point(size = 2, colour = "red", alpha = 0.4)+

ggtitle("Residual on Regression Line")

# plot residuals

f <- ggplot(data.frame(x = x, y = resid(lm(y ~ x))), aes(x = x, y = y))+
geom_hline(yintercept = 0, size = 2)+
geom_point(size = 3, colour = "black", alpha = 0.4)+
geom_point(size = 2, colour = "red", alpha = 0.4)+
xlab("X") + ylab("Residual")+ ggtitle("Residual vs X")

multiplot(g, f, cols = 2)

Residual on Regression Line Residual vs X
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: ENis) e
® 00
- . ’.: at’e
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L
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X X

e heteroskedasticity = heteroskedastic model’s variance is not constant and is a function of x

# create heteroskedastic data
x <- runif (100, 0, 6); y <- x + rnorm(100, mean = 0, sd = .001 * x)
# plot data + Tegression
g <- ggplot(data.frame(x = x, y = y), aes(x = x, y = y))+
geom_smooth(method = "Im", colour = "black")+
geom_point(size = 3, colour = "black", alpha = 0.4)+
geom_point(size = 2, colour = "red", alpha = 0.4) +
ggtitle("Residual on Regression Line")
# plot residuals
f <- ggplot(data.frame(x = x, y = resid(lm(y ~ x))), aes(x = x, y = y))+
geom_hline(yintercept = 0, size = 2) +
geom_point(size = 3, colour = "black", alpha = 0.4)+
geom_point(size = 2, colour = "red", alpha = 0.4)+
xlab("X") + ylab("Residual") + ggtitle("Residual vs X")
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# combine two plots

multiplot(g, £, cols = 2)

Residual on Regression Line
6_
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Inference in Regression
« statistics used for hypothesis tests and confidence intervals have the following attributes
00

9

~ N(0,1)

— it follows a finite sample Student’s T distribution and is normally distributed if the sample
has IID components built in (i.e. ¢;)

— used to test Hy: 0 =0y vs. Hy : 0 >,<,# 6.

— confidence interval for § = 6 + Q1-a)204, where Q1_, /2 = relevant quantile from normal(for large
samples) /T distribution(small samples, n-1 degrees of freedom)

Intervals/Tests for Coefficients

o standard errors for coefficients

wag:Vw(ZZﬂm_YW&_XU

(%~ X))
y :’l:)/iXi_X —Y Z»L: Xz'—X
(rpanding) = Var (=118 = )

Since ZXi - X=0
Z: 1Y(XZ -
(i (X XW

oy ( X)?
(i (Xi — X)?)?

X)

2

(simplifying) = < denominator taken out of Var

Var(y;) = 02)

0.2
7, = Varl) = S TR

by the same derivation =
1 X2
2 2
=V — —,
o5, ar(Bo) = ( ( )2> o

:>O'ﬁ0_0'\/ ZZ 1 )

e o is unknown but it’s estimate is as follows

o under IID Gaussian errors (assumed in linear regression with term ¢g), statistics for 5y and 31 are as

follows R
Bi — B;

O'Bj

where j =0,1

— these statistics follow t distribution with n — 2 degrees of freedom for small n and normal
distribution for large n
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o summary(fitModel)$coefficients = returns table summarizing the estimate, standar error, t value
and p value for the coefficients 5y and S

— the below example reproduces the table summary (fitModel)$coefficients produces

e Note: the variability in the slope, or Var(Bl), is the largest when the predictor values are spread into
two cluster that are far apart from each other

— when modeling linear relationships, it is generally good practice to have many data points that
evenly cover the entire range of data, increasing the denominator >, (X; — X)?
— this is so that variance of slope is minimized and we can be more confident about the relationship

e example

# getting data

y <- diamond$price; x <- diamond$carat; n <- length(y)

# calculate betal

betal <- cor(y, x) * sd(y) / sd(x)

# calculate betal

beta0 <- mean(y) - betal * mean(x)

# Gaussian regression error

e <- y - beta0 - betal * x

# unbiased estimate for wvariance

sigma <- sqrt(sum(e”2) / (n-2))

# (X_i - X Bar)

ssx <- sum((x - mean(x))"2)

# calculate standard errors

seBeta0 <- (1 / n + mean(x) ~ 2 / ssx) ~ .5 * sigma

seBetal <- sigma / sqrt(ssx)

# testing for HO: betaO = 0 and betal = 0

tBeta0 <- betalO / seBetal; tBetal <- betal / seBetal

# calculating p-values for Ha: betaO != 0 and betal0 != 0 (two sided)
pBetal <- 2 x pt(abs(tBetal), df = n - 2, lower.tail = FALSE)
pBetal <- 2 x pt(abs(tBetal), df = n - 2, lower.tail = FALSE)
# store results into table

coefTable <- rbind(c(betal, seBetal, tBetaO, pBetal), c(betal, seBetal, tBetal, pBetal))

colnames(coefTable) <- c("Estimate", "Std. Error", "t value", "P(>lt]|)")
rownames (coefTable) <- c("(Intercept)", "x")

# print table

coefTable

#it Estimate Std. Error t value PCltl)

## (Intercept) -259.6259 17.31886 -14.99094 2.523271e-19

## x 3721.0249 81.78588 45.49715 6.751260e-40

# regression model and the generated table from lm (identical to above)
fit <- 1Im(y ~ x); summary(fit)$coefficients

## Estimate Std. Error t value Pr(>|tl)
## (Intercept) -259.6259 17.31886 -14.99094 2.523271e-19
## x 3721.0249 81.78588 45.49715 6.751260e-40
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# store results in matrizc

sumCoef <- summary(fit)$coefficients

# print out confidence interval for betal

sumCoef [1,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[1, 2]

## [1] -294.4870 -224.7649

# print out confidence tinterval for betal in 1/10 units
(sumCoef [2,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[2, 2]) / 10

## [1] 355.6398 388.5651

o interpretation: With 95% confidence, we estimate that a 0.1 carat increase in diamond size results in
a 355.6 to 388.6 increase in price in (Singapore) dollars.

Prediction Interval

e estimated prediction, gg, at point zq is
9o = Bo + P10
e we can construct two prediction intervals
1. interval for the line at x

Interval :fo & t,—21-a/2 X SEline
where go = Bo + leo

(zo — X)?

1
and SEjjpe =04/ —+ =———==
\/n Zi:l(Xi - X)2

— interval has varying width

— interval is narrow as we are quite confident in the regression line

— as n increases, the interval becomes narrower, which makes sense because as more data is
collected, we are able to get a better regression line

x Note: if we knew By and 1, this interval would have zero width

2. interval for the predicted value, gy, at x(

Interval :§o & t,,_21-a/2 X SEy,
where gio = fo + P10

(930*)2)2

1
and SE;, =64/1 4+ — 4+ ———————
v \/ n Z?:1(Xi - X)2

— interval has varying width
— the 1 part in the SEy, formula represents the inherent variability in the data

* no matter how good of a regression line we get, we still can not get rid of the variability
in the data
x Note: even if we know By and B, the interval would still have width due to data variance

e predict(fitModel, data, interval = ("confidence")) = returns a 3-column matrix with data
for fit (regression line), lwr (lower bound of interval), and upr (upper bound of interval)
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— interval = ("confidence") = returns interval for the line
— interval = ("prediction") = returns interval for the prediction
— data = must be a new data frame with the values you would like to predict

o erample (ggplot2)

# create a sequence of wvalues that we want to predict at

newx = data.frame(x = seq(min(x), max(x), length = 100))

# calculate wvalues for both intervals

pl = data.frame(predict(fit, newdata= newx,interval = ("confidence")))

p2 = data.frame(predict(fit, newdata = newx,interval = ("prediction")))

# add column for interval labels

pl$interval = "confidence"; p2$interval = "prediction"

# add column for the z walues we want to predict

pl$x = newx$x; p2%x = newx$x

# combine the two dataframes

dat = rbind(pl, p2)

# change the name of the first column to y

names (dat) [1] = "y"

# plot the data

g <- ggplot(dat, aes(x = x, y = y))

g <- g + geom_ribbon(aes(ymin = lwr, ymax = upr, fill = interval), alpha = 0.2)
g <- g + geom_line()

g + geom_point(data = data.frame(x = x, y=y), aes(x = x, y = y), size = 4)

[
900 -
interval
>500 - confidence
prediction
300 -

o example (base)
# plot the = and y values

plot(x,y,frame=FALSE,xlab="Carat",ylab="Dollars",pch=21,col="black",bg="1lightblue", cex=2)
# add the fit line
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abline(fit,lwd=2)

# create sequence of x values that we want to predict at
xVals<-seq(min(x) ,max(x),by=.01)

# calculate the predicted y values

yVals<-betaO+betal*xVals

# calculate the standard errors for the interval for the line
sel<-sigma*sqrt(1/n+(xVals-mean(x)) ~2/ssx)

# calculate the standard errors for the interval for the predicted wvalues
se2<-sigma*sqrt(1+1/n+(xVals-mean(x)) ~2/ssx)

# plot the upper and lower bounds of both intervals
lines(xVals,yVals+2*sel); lines(xVals,yVals-2*sel)
lines(xVals,yVals+2*se2); lines(xVals,yVals-2xse2)

Dollars

200 400 600 800 1000
I
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Carat
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Multivariate Regression

o linear models = most important applied statistical /machine learning technique
o generalized linear model extends simple linear regression (SLR) model

p
Yi=51X1i + BoXoi + ...+ BpXpi + 6 = ZXikﬂj T
k=1

where X1; = 1 typically, so that an intercept is included
o least squares/MLE for the model (under IID Gaussian errors) minimizes

n P 2
> <Yz - ZXMB])
k=1

i=1

« linearity of coefficients is what defines a linear model as transformations of the variables (i.e. squaring)
still yields a linear model

Y =B X5+ X3+ + BpXl + &

e performing multivariate regression = pick any regressor and replace the outcome and all other regressors
by their residuals against the chosen one

Derivation of Coefficients

e we know for simple univariate regression through the origin

R S XY,
ElY] = Xupi b = L5
[ ] 1 ﬁlﬁl Zi:1 Xlz
¢ we want to minimize N
Z(Yi — X181 — Xoifo — .. — XpifBp)?
i=1

e we begin by looking at the two variable model where
BY;] = p; = X1:B1 + XoiBafii = X1:51 + X2if

e from our previous derivations, to minimize the sum of squares, the following has to true

i(Yi — fui)(fi — i) =0
o plugging in f; and g,
i(m — ) (i — i) = f;m — X161 — XoiB2)(X1iBr + Xaifls — X1 — X2:35)
= =
(simplifying) = S (Vi ~ X — Xoiho) [X1u(Bs = B1) + Xor(fa — )
pat
(expanding) = i(yi — X1iB1 — X2iBa) X14(B1 — B1) + im — X1:B1 — X2if2) X2i(B2 — f2)
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o for the entire expression to equal to zero,

Z(Yi — X1B1 — Xoifo)X1i(B1 — B1) =
i1
(since B1, B1 don't depend on i) = Z(Yz — X1B1 — Xoif2) X1, =0 (1)

i1
Z(Yi — X1,B1 — Xoi32) Xoi(B2 — B2) = 0

i=1

(since B, By don't depend on i) = Z(Yz — X13B1 — Xoif2) X0 =0 (2)

i=1
« we can hold B fixed and solve (2) for 3,
D (Vi = X13p1) Xoi = Y X3,8, =0
i=1 i=1
D (Y — X1ip) Xo; = ZX
i=1

By = Zizl(Yz’ — X1:61) X

2im X3
« plugging 3, back into (1), we get
n R " (Y — X181) Xo;
> Y- Xup - i - 1251) 7 Xoi| X1 =0
i=1 21 X35 |
- s 21 Y X, Y X1iXay ]
Vi — X1 — 5 Xoi + g X2iP1 | X1 =0
; 251 X3 21 X3 ]
S 21 YiXo; 5 1 X1 X, ]
V- S X | - O | X - =S Xai | | X =0
2 < RO S v e R

Z YXQJ . A
= (v, - S X3 5 Xo; | =residual for Y; = X282 + €;
j=17%23

(Xu X XXy

2;11 e X2i> = residual for X;; = X; 29 + ¢;

e We can rewrite

S Y X R S X1 X
( i — EJ: ! ;(2 L Xoi | =B | Xui — ﬁ){m X1 =0 (3)
j=14%2; j=1%2;

n
E |:ez Yix, — Bre;, X1|X2:| X1, =0

i=1

as

where "
o g 2= %Y
i,alb — Wi — 5 Vi
i b3

which is interpreted as the residual when regressing b from a without an intercept
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« solving (3), we get
n
2oim1 CLY X580, X, |Xs
n
Dim1 € X | X, X1

o to simplify the denominator, we will look at

n n n
2 B x. _ 2=1 X1 X
Z € X1 X2 = Z €i,X1|X> 15 — 7211 X2 2
i=1 i=1 J=17725

n
ZJ 1X1]X2J
ZE €i,X 1| X2 X 15 — ST Xz E €1, X1 | X2X2i

(recall that Z e; X; =0, so the 2™ term is 0)
i=1

B =

(4)

n

n
2 — .
= E €l X1|Xs = E €3, X1 | X, X1i
im1 i=1

o plugging the above equation back in to (4), we get

n
D i1 €Y X560, X, | Xs

B =

Y€l
i=1 3, X, | X

e general case

pick one regressor and to replace all other variables by the residuals of their regressions against

that one N
D Y= Xuipr— .. = XpiBBp) Xk = 0
i=1

for k =1,...,p yields p equations with p unknowns

— holding Bl, e ,Bp_l constant, we get

Yo (V- X1p— ... — p717i3p71)Xpi
S Xp

Bp:

— plugging 317 back into the equation

n

§ (eivix, —€ixi|x,B1 — - —€ix, 1 x,8p-1)Xx =0
i=1
— since we know that "
X _ . + Zi:l inXpiX
k = ez,Xi\Xp Zn X2 p
i=1 “‘pi
and that
n
E €i,X;|X, Xpi =
i=1
the equation becomes
n
E (eiy|x, = €ix1|x, 01 — - = €ix,_1x,Bp-1)€i x| x, =0

i=1
— this procedure reduces p LS equations and p unknowns to p — 1 LS equations and p — 1 unknowns

* every variable is replaced by its residual with X,
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* process iterates until only Y and one variable remains

* or more intuitively, we take residuals over the confounding variables and do regression through
the origin

e example

— for simple linear regression, Y; = 1 X1; + B2X2; where Xo; = 1 is an intercept term
— the residuals

Y X, _
ZJ:Ll J 22J Xp=Y, -V
Zj:lXQj

x Note: this is according to previous derivation of the slope of a regression line through the
origin

€iy|Xs = Yi —

" X1 X _
— the residuals e; x,|x, = X1; — 2?7;22])(22- =X, - X3
j=1"2J
x Note: this is according to previous derivation of the slope of a regression line through the
origin
— Thus

51 _ Zi:l :i7Y\§2ei7X1|X2 _ Zi:l(;LXi - X)()fl ; Y) _ COT(X, Y) Sd(Y)
>t €3 X1 X Y i (Xi = X)

Interpretation of Coefficients
e from the derivation in the previous section, we have

n
A Dim1 €Y X6, X0 Xo
61 - En 2
i=1 X, | X

« this is interpreted as the effect of variable X; when the effects of all other variables have been removed
from X; and the predicted result Y (holding everything else constant/adjusting for all other variables)

e the expected response is as follows

p
EY[Xy=a1,...,. X, =xp] = Y _ 21
k=1

so the expected change in the response through change in one variable is
E[Y|X1 =2+ 17...,Xp = Jj‘p] —E[Y‘Xl = a:l,...,Xp =

p p
=(z1+ 1B+ > wfe — Y wkbBr

k=2 k=1
p D
=(z1+1)B1 + > wfe — (@181 + Y waB)
k=2 k=2

=b1

o therefore, interpretation of a multivariate regression coefficient — expected change in the response per
unit change in the regressor, holding all of the other regressors fixed

o all of the SLR properties/calculations extend to generalized linear model

— model = Y; = >V _, XixBy + €¢; where ¢; ~ N(0,0?)
— fitted response = V; = S0 X;1.0k
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— residual = ¢; =Y, - Y]
_ . . A2 1 n 2
variance estimate = 6~ = — DI
— predicted responses at new values, z1,...,x, = plug = values into > ¥ _, xS
— standard errors of coefficients = G4,

— test/CI statistic = 6’;;’8" follows a T" distribution with n — p degrees of freedom
Br

— predicted/expected response intervals = calculated using standard errors of predicted re-
sponses of Y;

Example: Linear Model with 2 Variables and Intercept

# simulate the data

n = 100; x = rnorm(n); x2 = rnorm(n); x3 = rnorm(n)
# equation = intercept + warl + wvar2 + var3 + error
y=1+x+ x2 + x3 + rnorm(n, sd = .1)

# restdual of y regressed on var2 and var3

ey = resid(Im(y ~ x2 + x3))

# restidual of y regressed on var2 and var3d

ex = resid(Im(x ~ x2 + x3))

# estimate betal for warl

sum(ey * ex) / sum(ex ~ 2)

## [1] 0.9883021

# regression through the origin with zval with var2 var3 effect removed
coef (Im(ey ~ ex - 1))

## ex
## 0.9883021

# regression for all three variables
coef(Im(y ~ x + x2 + x3))

## (Intercept) X x2 x3
## 1.0093454 0.9883021 0.9973557  1.0127424

Example: Coefficients that Reverse Signs

e Note: more information can be found at ?swiss

o data set is composed of standardized fertility measure and socio-economic indicators for each of 47
French-speaking provinces of Switzerland at about 1888

« data frame has 47 observations on 6 variables, each of which is in percent [0, 100]

— Fertility = common standardized fertility measure — outcome

— Agriculture = % of males involved in agriculture as occupation

— Examination = % draftees receiving highest mark on army examination
— Education = % education beyond primary school for draftees

— Catholic = % catholic vs protestant

— Infant. Mortality = live births who live less than 1 year
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o [GGally package] ggpairs(data) = produces pair wise plot for the predictors similar to pairs in base
package

# load dataset
require(datasets); data(swiss); require(GGally)
# produce pairwise plot using ggplot2

ggpairs(swiss, lower = list(continuous = "smooth"),params = c(method = "loess"))

ESO ) Corr: Corr: Corr: Corr: Corr:

B30 - 0.353 -0.646 | -0.664 0.464 0.417
Corr: Corr: Corr:
-0.64 0.401 —0.0609
Corr: Corr: Corr:
0.698 -0.573 -0.114

Corr:
=0.0993
)
I3 Corr:
<
S 0.175
250
=25
gzo
15
&
E [ ) [ ) [ ] [ ] [ ]

# print coefficients of regression of fertility on all predictors

summary (Im(Fertility ~ . , data = swiss))$coefficients

#it Estimate Std. Error t value Pr(>1tl)
## (Intercept) 66.9151817 10.70603759 6.250229 1.906051e-07
## Agriculture -0.1721140 0.07030392 -2.448142 1.872715e-02
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## Examination -0.2580082 0.25387820 -1.016268 3.154617e-01
## Education -0.8709401 0.18302860 -4.758492 2.430605e-05
## Catholic 0.1041153 0.03525785 2.952969 5.190079e-03
## Infant.Mortality 1.0770481 0.38171965 2.821568 7.335715e-03

« interpretation for Agriculture coefficient

— we expect an -0.17 decrease in standardized fertility for every 1% increase in percentage of
males involved in agriculture in holding the remaining variables constant
— since the p-value is 0.0187272, the t-test for Ho : Bagrs = 0 versus Hy : Bagri 7 0 is significant

o however, if we look at the unadjusted estimate (marginal regression) for the coefficient for Agriculture

# run marginal regression on Agriculture
summary (lm(Fertility ~ Agriculture, data = swiss))$coefficients

## Estimate Std. Error t value Pr(>|tl)
## (Intercept) 60.3043752 4.25125562 14.185074 3.216304e-18
## Agriculture 0.1942017 0.07671176 2.531577 1.491720e-02

« interpretation for Agriculture coefficient

— we expect an 0.19 increase in standardized fertility for every 1% increase in percentage of males
involved in agriculture in holding the remaining variables constant

x Note: the coefficient flipped signs
— since the p-value is 0.0149172, the t-test for Hy : Bagrs = 0 versus H, : Bagri # 0 is significant

e to see intuitively how a sign change is possible, we can look at the following simulated example

# simulate data
n <- 100; x2 <~ 1 : n; x1 <- .01 * x2 + runif(n, -.1, .1); y = -x1 + x2 + rnorm(n, sd = .01)
# print coefficients
c("with x1" = summary(lm(y ~ x1))$coef[2,1],
"with x1 and x2" = summary(lm(y ~ x1 + x2))$coef[2,1])

## with x1 with x1 and x2
## 93.292440 -1.010287

# print p-values
c("with x1" = summary(lm(y ~ x1))$coef[2,4],
"with x1 and x2" = summary(lm(y ~ x1 + x2))$coef[2,4])

## with x1 with x1 and x2
## 2.910034e-69 2.645449e-76

# store all data in one data frame (ey and exl are residuals with respect to z2)
dat <- data.frame(y = y, x1 = x1, x2 = x2, ey = resid(lm(y ~ x2)), exl = resid(Im(xl ~ x2)))
# plot y vs i
g <- ggplot(dat, aes(y = y, x = x1, colour = x2)) +
geom_point(colour="grey50", size = 2) +
geom_smooth(method = 1lm, se = FALSE, colour = "black") + geom_point(size = 1.5) +
ggtitle("unadjusted = y vs x1")
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# plot residual of y adjusted for z2 vs restidual of x1 adjusted for z2

g2 <- ggplot(dat, aes(y = ey, x = exl, colour = x2)) +
geom_point(colour="grey50", size = 2) +
geom_smooth(method = 1m, se = FALSE, colour = "black") + geom_point(size = 1.5) +
ggtitle("adjusted = y, x1 residuals with x2 removed") + labs(x = "resid(x1~x2)",

y = "resid(y~x2)")
# combine plots
multiplot(g, g2, cols = 2)

unadjusted =y vs x1 adjusted =y, x1 residuals with x2 removed
100 -
0.10 -
- x2 x2
~ 100 0.05- 100
g
75 X 75
> 50 - o -
50 = 0.00 50
(72}
(8]
25 = 25
25 - -0.05 -
0 Jes® -0.10 -
I I I I I I I I I I
0.00 0.25 0.50 0.75 1.00 -0.10-0.05 0.00 0.05 0.10
x1 resid(x1~x2)

e as we can see from above, the correlation between y and x1 flips signs when adjusting for x2

o this effectively means that within each consecutive group/subset of points (each color gradient) on the
left hand plot (unadjusted), there exists a negative relationship between the points while the overall
trend is going up

e going back to the swiss data set, the sign of the coefficient for Agriculture reverses itself with the

inclusion of Examination and Education (both are negatively correlated with Agriculture)

— correlation between Agriculture and Education: -0.64
— correlation between Agriculture and Examination: -0.69
— correlation between Education and Examination: 0.7

* this means that the two variables are likely to be measuring the same things
e Note: it is difficult to interpret and determine which one is the correct model — one should

not claim positive correlation between Agriculture and Fertility simply based on marginal regression
Im(Fertility ~ Agriculture, data=swiss)

Example: Unnecessary Variables

e unnecessary predictors = variables that don’t provide any new linear information, meaning that
the variable are simply linear combinations (multiples, sums) of other predictors/variables
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e when running a linear regression with unnecessary variables, R automatically drops the linear combina-
tions and returns NA as their coefficients

# add a linear combination of agriculture and education wvariables
z <- swiss$Agriculture + swiss$Education
# run linear regression with unnecessary variables

Im(Fertility ~ . + z, data = swiss)$coef

#i# (Intercept) Agriculture Examination Education
#i# 66.9151817 -0.1721140 -0.2580082 -0.8709401
#i#t Catholic Infant.Mortality z

#i# 0.1041153 1.0770481 NA

e as we can see above, the R dropped the unnecessary variable z by excluding it from the linear regression
— 2z’s coefficient is NA
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Dummy Variables

e dummy variables = binary variables that take on value of 1 when the measurement is in a particular
group, and 0 when the measurement is not (i.e. in clinical trials, treated = 1, untreated = 1)
e in linear model form,

Yi= 0o+ Xupi + e
where X;; is a binary /dummy variable so that it is a 1 if measurement ¢ is in a group and 0 otherwise

— for people in the group, the mean or px,,=1 = E[Y;] = Bo + 51

— for people not in the group, the mean or px, —o = E[Y;] = Bo

— predicted mean for group = Bo + /31

— predicted mean for not in group = BO

— coefficient £y for X;; is interpreted as the increase or decrease in the mean when comparing
two groups (in vs not)

— Note: including a dummy variable that is 1 for not in the group would be redundant as it would
simply be a linear combination 1 — X;

More Than 2 Levels

« for 3 factor levels, we would need 2 dummy variables and the model would be
Yi= o+ X1+ Xi2fB2 + €

o for this example, we will use the above model to analyze US political party affiliations (Democrats vs
Republicans vs independents) and denote the variables as follows:

— X;1 = 1 for Republicans and 0 otherwise

— X9 = 1 for Democrats and 0 otherwise

If 4 is Republican, Xil = 1, Xi2 = 07 E[}/z] = BO + /61
If ¢ is Democrat, X;; =0, X;0 = 1, E[Y;] = Bo + B2
If ¢ is independent, X;; =0, X;2 =0, E[Y;] = B

— (1 compares Republicans to independents

— (2 compares Democrats to independents

— B1 — B2 compares Republicans to Democrats
e Note: choice of reference category (independent in this case) changes the interpretation
— reference category = the group whose binary variable has been eliminated

e the same principles explained above can be expanded to p level model

Yi =00+ Xufr+ XioBa+ ...+ XipBp + €

Example: 6 Factor Level Insect Spray Data

o below is a violin plot of the 6 different types (A, B, C, D, E, and F) of insect sprays and their potency
(kill count) from InsectSprays data set

— Note: the varying width of each bar indicates the density of measurement at each value

# load insect spray data

data(InsectSprays)
ggplot(data = InsectSprays, aes(y = count, x = spray, fill = spray)) +
geom_violin(colour = "black", size = 2) + xlab("Type of spray") +

ylab("Insect count")
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Linear model fit with group A as reference category

# linear fit with 5 dummy variables
summary (1lm(count ~ spray, data = InsectSprays))$coefficients

#it Estimate Std. Error t value Pr(>|tl)
## (Intercept) 14.5000000 1.132156 12.8074279 1.470512e-19
## sprayB 0.8333333 1.601110 0.5204724 6.044761e-01
## sprayC -12.4166667 1.601110 -7.7550382 7.266893e-11
## sprayD -9.5833333 1.601110 -5.9854322 9.816910e-08
## sprayE -11.0000000 1.601110 -6.8702352 2.753922e-09
## sprayF 2.1666667 1.601110 1.3532281 1.805998e-01

e Note: R automatically converts factor variables into n — 1 dummy variables and uses the first category
as reference

— mean of group A is therefore the default intercept

« the above coefficients can be interpreted as the difference in means between each group (B, C, D, E,
and F) and group A (the intercept)

— example: the mean of group B is 0.83 higher than the mean of group A, which is 14.5
— means for group B/C/D/E/F = the intercept + their respective coeflicient

o all t-tests are for comparisons of Sprays versus Spray A
Hard-coding the dummy variables

e this produces the exact same result as the command 1lm(count ~ spray, data = InsectSprays)

# hard coding dummy variables

Im(count ~ I(1 * (spray == 'B')) + I(1 * (spray == 'C')) +
I(1 * (spray == 'D')) + I(1 * (spray == 'E')) +
I(1 * (spray == 'F')), data = InsectSprays)$coefficients
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#Hi#t (Intercept) I(1 * (spray == "B")) I(1
# 14.5000000 0.8333333
## I(1 * (spray == "D")) I(1 * (spray == "E")) I(1
## -9.5833333 -11.0000000

Linear model fit with all 6 categories

# linear fit with 6 dummy variables

Im(count ~ I(1 * (spray 'B')) + I(1 * (spray ==
I(1 * (spray == 'D')) + I(1 * (spray ==
I(1 * (spray 'F')) + I(1 x (spray ==

data = InsectSprays)$coefficients
#it (Intercept) I(1 * (spray == "B")) I(1
## 14.5000000 0.8333333
## I(1 * (spray == "D")) I(1 * (spray == "E")) I(1
# -9.5833333 -11.0000000
## I(1 * (spray == "A"))
## NA

* (spray == "C"))
-12.4166667

* (spray == "F"))
2.1666667

'C‘)) +
'E‘)) +
'A‘)),

* (spray == "C"))
-12.4166667

* (spray == "F"))
2.1666667

e as we can see from above, the coefficient for group A is NA

e this is because X;4 = 1 — X;5 —
combination of the rest of the dummy variables

Linear model fit with omitted intercept

Xic — Xip — Xip —

X;r, or the dummy variable for A is a linear

e eliminating the intercept would mean that each group is compared to the value 0, which would yield 6

variables since A is no longer the reference category

e this means that the coefficients for the 6 variables are simply the mean of each group

— when X;4 = 1, all the other dummy variables become 0, which means the linear model becomes

Y, = Ba+e¢

— then E[Y;] = fa = ua

— this makes sense because the best prediction for the kill count of spray of type A is the mean of

recorded kill counts of A spray

# linear model with omitted intercept

summary (lm(count ~ spray - 1, data = InsectSprays))$coefficients

#it Estimate Std. Error t value Pr(>ltl)
## sprayA 14.500000 1.132156 12.807428 1.470512e-19
## sprayB 15.333333 1.132156 13.543487 1.001994e-20
## sprayC 2.083333 1.132156 1.840148 7.024334e-02
## sprayD 4.916667 1.132156 4.342749 4.953047e-05
## sprayE 3.500000 1.132156 3.091448 2.916794e-03
## sprayF 16.666667 1.132156 14.721181 1.573471e-22

# actual means of count by each wvariable

round (tapply (InsectSprays$count, InsectSprays$spray, mean), 2)
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##

A

B C D E

F

## 14.50 15.33 2.08 4.92 3.50 16.67

# reorder the levels of spray wvartable such that C is the lowest level

o all t-tests are for whether the groups are different than zero (i.e. are the expected counts 0 for that
spray?)

e to compare between different categories, say B vs C, we can simply subtract the coefficients

e to reorient the model with other groups as reference categories, we can simply reorder the levels for

the factor variable

— relevel(var,

"1") = reorders the factor levels within the factor variable var such that the

specified level “1” is the reference/base/lowest level

regression

spray2 <- relevel(InsectSprays$spray, "C")
# rerun linear regression with releveled factor
summary (lm(count ~ spray2, data = InsectSprays))$coef

##
##
##
##
##
##
##

spray2A
spray2B
spray2D
spray2E

Estimate Std. Error

(Intercept) 2.083333 1.132156
12.416667 1.601110
13.250000 1.601110
2.833333 1.601110
1.416667 1.601110
14.583333 1.601110

spray2F

© O - 0 N -

t value
.840148
.755038

. 769606
.884803
.108266

e it is important to note in this example that

— counts are bounded from below by 0 — wviolates the assumption of normality of the errors
— there are counts near zero — violates intent of the assumption — not acceptable in assuming

normal distribution

— variance does not appear to be constant across different type of groups — violates assumption

— Poisson GLMs are better (don’t have to worry about the assumptions) for fitting count data

* taking log(counts) + 1 may help (+1 since there are the zero values)
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Interactions

e interactions between variables can be added to a regression model to test how the outcomes change
under different conditions
o we will use the data set from the Millennium Development Goal from the UN which can be found here

— Numeric = values for children aged <5 years underweight (%)
— Sex = records whether

— Year = year when data was recorded

— Income = income for the child’s parents

# load in hunger data

hunger <- read.csv("hunger.csv")

# exclude the data with "Both Sezes" as values (only want Male vs Female)
hunger <- hunger [hunger$Sex!="Both sexes", ]

# structure of data

str (hunger)

## 'data.frame': 948 obs. of 12 variables:

## $ Indicator : Factor w/ 1 level "Children aged <5 years underweight ()": 1111111111,
## § Data.Source : Factor w/ 670 levels "NLIS_310005",..: 7 52 519 380 548 551 396 503 643 632 ...
## §$ PUBLISH.STATES: Factor w/ 1 level "Published": 1111111111 ...

## $ Year : int 1986 1990 2005 2002 2008 2008 2003 2006 2012 1999 ..

## $ WHO.region : Factor w/ 6 levels "Africa","Americas",..: 1223111212 ...

## $ Country : Factor w/ 151 levels "Afghanistan",..: 115 104 97 69 57 54 71 13 115 144 ...

## $ Sex : Factor w/ 3 levels "Both sexes","Female",..: 3332233332 ..

## ¢ Display.Value : num 19.3 2.2 5.3 3.2 17 15.7 19.3 4 156.5 4.2 ...

## $ Numeric :num 19.3 2.2 5.3 3.2 17 15.7 19.3 4 15.5 4.2

## $ Low : logi NA NA NA NA NA NA ...

## $ High : logi NA NA NA NA NA NA ...

## $ Comments : logi NA NA NA NA NA NA ...

Model: % Hungry ~ Year by Sex

e this will include 2 models with 2 separate lines
o model for % hungry (Hp) vs year (Yr) for females is

Hp; = Bro + Br1Yr: + €y

— Bro = % of females hungry at year 0
— Br1 = decrease in % females hungry per year
— ep; = standard error (or everything we didn’t measure)

o model for % hungry (H)ys) vs year (Yas) for males is
Hyi = Byo + Bt Y + e

— Bmo = % of males hungry at year 0
— Ba1 = decrease in % males hungry per year
— ey = standard error (or everything we didn’t measure)

e each line has different residuals, standard errors, and variances
e Note: Bro and Bpro are the interpolated intercept at year 0, which does hold any interpretable value

for the model
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— it’s possible to subtract the model by a meaningful value (% hungry at 1970, or average), which
moves the intercept of the lines to something interpretable

e Note: we are also assuming the error terms ep; and €yr; are Gaussian distributions — mean = 0

# run linear model with Numeric vs Year for male and females

male.fit <- lm(Numeric ~ Year, data = hunger[hunger$Sex == "Male", ])
female.fit <- 1lm(Numeric ~ Year, data = hunger [hunger$Sex == "Female", ])
# plot J hungry vs the year

plot (Numeric ~ Year, data = hunger, pch = 19, col=(Sex=="Male")*1+1)

# plot regression lines for both

abline(male.fit, lwd = 3, col = "black")

abline(female.fit, lwd = 3, col = "red")

Numeric
10 20 30 40 50 60

0

I I I I I
1970 1980 1990 2000 2010

Year

Model: % Hungry ~ Year + Sex (Binary Variable)

e this will include 1 model with 2 separate lines with the same slope

o model for % hungry (H) vs year (Y) and dummy variable for sex (X) is
H; = Po+ p1X; + B2Yi + €

— Bo = % of females hungry at year 0
— Bo + B1 = % of males hungry at year 0

x NNote: the term (1X; is effectively an adjustment for the intercept for males and DOES
NOT alter the slope in anyway
x 31 = difference in means of males vs females

— [ = decrease in % hungry (males and females) per year
* this means that the slope is constant for both females and males
— € = standard error (or everything we didn’t measure)

* we are still assuming Gaussian error term

48



e abline(intercept, slope) = adds a line to the existing plot based on the intercept and slope provided

— abline(lm) = plots the linear regression line on the plot

# run linear model with Numeric vs Year and Sex
both.fit <- lm(Numeric ~ Year+Sex, data = hunger)
# print fit

both.fit$coef

## (Intercept) Year SexMale
## 633.528289 -0.308397 1.902743

# plot % hungry vs the year

plot(Numeric ~ Year, data = hunger, pch = 19, col=(Sex=="Male")*1+1)
# plot regression lines for both (same slope)
abline(both.fit$coef[1], both.fit$coef[2], 1lwd = 3, col = "black")
abline(both.fit$coef [1]+both.fit$coef [3], both.fit$coef[2], lwd = 3,

col = "red")
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Model: % Hungry ~ Year 4+ Sex + Year * Sex (Binary Interaction)

2010

e this will include 1 model with an interaction term with binary variable, which produces 2 lines with

different slopes

e we can introduce an interaction term to the previous model to capture the different slopes between

males and females

o model for % hungry (H) vs year (Y), sex (X), and interaction between year and sex (¥ x X) is

Hi = o+ 51 Xi + BoYi + B3 XiYi + ¢

— Bo = % of females hungry at year 0
— Bo + B1 = % of males hungry at year 0
* 31 = change in intercept for males
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— B2 = decrease in % hungry (females) per year
— B2+ B3 = decrease in % hungry (males) per year

* 3 = change in slope for males

— ¢ = standard error (or everything we didn’t measure)

o expected value for males is F[H;|ar = (Bo + 51) + (B2 + F3)Y;
« expected value for females is E[H;|r = 5o + 52Y;

— (1 and P3 are effectively adjusting the intercept and slope for males

e lm(outcome ~ varl*var2) = whenever an interaction is specified in 1m function using the * operator,
the individual terms are added automatically

— lm(outcome ~ varl+var2+varl*var2) = builds the exact same model
— Im(outcome ~ varl:var2) = builds linear model with only the interaction term (specified by :
operator)

# run linear model with Numeric vs Year and Sex and interaction term
interaction.fit <- 1m(Numeric ~ Year*Sex, data = hunger)

# print fit

interaction.fit$coef

## (Intercept) Year SexMale Year:SexMale
## 603.50579986 -0.29339638 61.94771998 -0.03000132

# plot J hungry vs the year

plot (Numeric ~ Year, data = hunger, pch = 19, col=(Sex=="Male")*1+1)

# plot regression lines for both (different slope)

abline(interaction.fit$coef[1], interaction.fit$coef[2], lwd = 3, col = "black")

abline(interaction.fit$coef[1]+interaction.fit$coef [3],
interaction.fit$coef[2]+interaction.fit$coef[4], 1lwd = 3, col = "red")

Numeric
10 20 30 40 50 60

0

1970 1980 1990 2000 2010

Year
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Example: % Hungry ~ Year + Income + Year * Income (Continuous Interaction)

e this will include 1 model with an interaction term with continuous variable, which produces a curve
through the plot
« for continuous interactions (two continuous variables) with model
Yi= o+ B1 X1 + B2Xoi + B3 X1i Xoi + €
the expected value for a given set of values x1 and x5 is defined as
ElYi| X1 = z1, X2; = 2] = fo + fr1w1 + Pazz + Baz122
e holding X5, constant and varying X; by 1, we have
Y;
0X1i

= ElY;| X1 =21+ 1, Xo; = 22] — ElY;| X1 = 21, Xoy = 2]

- ﬁo + 61(I1 + 1) + 52332 + 53(351 + 1)352 — [ﬂo + 511’1 + /821:2 + ﬂgxll'g}
= B1 + Psxo

— Note: this means that slope for X1; not a constant and is dependent on X;
— (31 is the slope for Xq; when X5; =0

e by the same logic, if we vary X; by 1 and find the change, and vary X5 by 1 and find the change, we get
0 aY;
0Xo; \ 90Xy

> = ElY;| X1 =21+ 1, X9 =22 + 1] — E[Yi| X1 = 21, X2y = 22 + 1]

- (E[Yi|X1i =x1+ 1, Xo; = 2] — E[Y;| X15 = 21, Xo; = $2]>

=Fo+ Bi(z1+ 1)+ Ba(za+ 1) + Bs(z1 + 1) (z2+ 1) — [Bo + Srz1 + Ba(xe + 1) + Szzi(z2 + 1)]
- (50 + Br(x1 + 1) + Bowa + B3(x1 + 1)x2 — [Bo + P11 + Paze + 53$1$2])

= 3

— this can be interpreted as 3 = the expected change in Y per unit change in X; per unit
change of X,
— in other words, 83 = the change in slope of X per unit change of X5

o coming back to the hunger data, model for % hungry (H) vs year (Y'), income (I), and interaction
between year and income (Y x I) is

Hi = fo+ Pl + BaYi + BsL;Y; + ¢f

— Bo = % hungry children (whose parents have no income) at year 0
— ff1 = change in % hungry children for each dollar in income in year 0
— B3 = change in % hungry children (whose parents have no income) per year
— 3 = change in % hungry children per year and for each dollar in income
* if income is $10,000, then the change in % hungry children per year will be 5; — 10000 x (3
+

- €

= standard error (or everything we didn’t measure)

e Note: much care needs to be taken when interpreting these coefficients

# generate some income data

hunger$Income <- 1:nrow(hunger)*10 + 500*runif (nrow(hunger), 0, 10) +
runif (nrow(hunger), 0, 500)71.5

# run linear model with Numeric vs Year and Income and interaction term

Im(Numeric ~ Year*Income, data = hunger)$coef

##  (Intercept) Year Income Year:Income
## 1.489576e+03 -7.347779e-01 -7.101993e-02 3.541102e-05
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Multivariable Simulation

o we will generate a series of simulated data so that we know the true relationships, and then run linear
regressions to interpret and compare the results to truth

o treatment effect = effect of adding the treatment variable ¢ to the regression model (i.e. how adding
t changes the regression lines)

— effectively measures how much the regression lines for the two groups separate with regression
Im(y ~ x + t)

e adjustment effect = adjusting the regression for effects of x such that we just look at how ¢ is
marginally related to Y

— ignore all variation of z and simply look at the group means of t =1vst =10

Simulation 1 - Treatment = Adjustment Effect

o the following code simulates the linear model,
Yi = Bo+ Brzi + Pali + €

where ¢ = {0,1} — binary variable

# simulate data

n <- 100; t <- rep(c(0, 1), c(@/2, n/2)); x <~ c(runif(n/2), runif(n/2));
# define parameters/coefficients

betal0 <- 0; betal <- 2; beta2 <- 1; sigma <- .2

# generate outcome using linear model

y <- beta0d + x * betal + t * beta2 + rnorm(n, sd = sigma)

# set up axes

plot(x, y, type = "n", frame = FALSE)

# plot linear fit of y vs

abline(lm(y ~ x), lwd = 2, col = "blue")

# plot means of the two groups (t = 0 vs t = 1)

abline(h = mean(y[1l : (n/2)]), 1lwd = 3, col = "red")

abline(h = mean(y[(n/2 + 1) : n]), lwd = 3, col = "red")

# plot linear fit of y vs = and t

fit <- Im(y ~ x + t)

# plot the two lines corresponding to (t = 0 vs t = 1)
abline(coef (fit) [1], coef(fit)[2], 1lwd = 3)

abline(coef (fit) [1] + coef(fit)[3], coef(fit)[2], lwd = 3)

# add in the actual data points

points(x[1 : (n/2)], y[1 : (n/2)], pch = 21, col = "black", bg = "lightblue", cex = 1)
points(x[(n/2 + 1) : n], y[(n/2 + 1) : n], pch = 21, col = "black", bg = "salmon", cex = 1)
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# print treatment and adjustment effects
rbind("Treatment Effect" = Ilm(y~t+x)$coef[2], "Adjustment Effect" = 1m(y~t)$coef[2])

## t
## Treatment Effect 1.027696
## Adjustment Effect 1.097452

e in the above graph, the elements are as follows:

— red lines = means for two groups (t =0 vs t = 1) — two lines representing 1m(y ~ t)

— black lines = regression lines for two groups (¢t = 0 vs t = 1) — two lines representing 1lm(y ~ t +
x)

— blue line = overall regression of y vs  — line representing 1m(y ~ x)

e from the graph, we can see that
— x variable is unrelated to group status ¢

* distribution of each group (salmon vs light blue) of Y vs X is effectively the same

— x variable is related to Y, but the intercept depends on group status ¢
— group variable t is related to Y

* relationship between ¢t and Y disregarding x =~ the same as holding x constant

x difference in group means =~ difference in regression lines

* treatment effect (difference in regression lines) ~ adjustment effect (difference in group
means)

Simulation 2 - No Treatment Effect

¢ the following code simulates the linear model,
Yi = Bo + Brzi + Pati + €

where ¢ = {0,1} — binary variable
e in this case, 52 is set to 0

53



# simulate data

n <- 100; t <- rep(c(0, 1), c(n/2, n/2)); x <= c(runif(n/2), 1.5 + runif(n/2));
# define parameters/coefficients

betaO <- 0; betal <- 2; beta2 <- 0; sigma <- .2

# generate outcome using linear model

y <- betald + x * betal + t * beta2 + rnorm(n, sd = sigma)

# set up azxes

plot(x, y, type = "n", frame = FALSE)

# plot linear fit of y vs =

abline(lm(y ~ x), lwd = 2, col = "blue")

# plot means of the two groups (t = 0 vs t = 1)

abline(h = mean(y[1 : (n/2)]), 1lwd = 3, col = "red")

abline(h = mean(y[(n/2 + 1) : n]), lwd = 3, col = "red")

# plot linear fit of y vs = and t

fit <- 1m(y ~ x + t)

# plot the two lines corresponding to (t = 0 vs t = 1)

abline(coef (fit) [1], coef(fit)[2], lwd = 3)

abline(coef (fit) [1] + coef(fit)[3], coef(fit)[2], 1lwd = 3)

# add in the actual data points

points(x[1 : (n/2)], y[1 : (n/2)], pch = 21, col = "black", bg = "lightblue", cex = 1)
points(x[(n/2 + 1) : n], y[(n/2 + 1) : n], pch = 21, col = "black", bg = "salmon", cex = 1)

# print treatment and adjustment effects
rbind("Treatment Effect" = lm(y~t+x)$coef[2], "Adjustment Effect" = lm(y~t)$coef[2])

## t
## Treatment Effect 0.1717849
## Adjustment Effect 3.0907555

e in the above graph, the elements are as follows:

— red lines = means for two groups (t =0 vs t = 1) — two lines representing 1m(y ~ t)
— black lines = regression lines for two groups (t = 0 vs t = 1) — two lines representing 1lm(y ~ t +

x)
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* in this case, both lines correspond to lm(y ~ x) since coeflicient of ¢ or S5 = 0
blue line = overall regression of y vs  — line representing 1m(y ~ x)
* this is overwritten by the black lines

o from the graph, we can see that

x variable is highly related to group status t
* clear shift in = with salmon vs light blue groups
x variable is related to Y, but the intercept does not depend on group status ¢
* intercepts for both lines are the same
x variable shows similar relationships to Y for both groups (t = 0 vs ¢ = 1, or salmon vs
lightblue)
* the x values of the two groups of points both seem to be linearly correlated with Y
group variable t is marginally related to Y when disregarding X
x x values capture most of the variation
x adjustment effect (difference in group means) is very large
group variable t is unrelated or has very little effect on Y
x treatment effect is very small or non-existent
x Note: the groups (t = 0 vst = 1) are incomparable since there is no data to inform the
relationship between t and Y
* the groups (salmon vs lightblue) don’t have any overlaps so we have no idea how they behave
* this conclusion is based on the constructed alone

Simulation 3 - Treatment Reverses Adjustment Effect

o the following code simulates the linear model,

Y = Bo + bz + Bati + €

where ¢ = {0,1} — binary variable
« in this case, [y is set to 0 — no intercept

# stmulate data

# define
betal <-

n <- 100; t <- rep(c(0, 1), c(@/2, n/2)); x <~ c(runif(n/2), .9 + runif(n/2));

parameters/coefficients
0; betal <- 2; beta2 <- -1; sigma <- .2

# generate outcome using linear model
y <- beta0d + x * betal + t * beta2 + rnorm(n, sd = sigma)

# set up

ares
nan

plot(x, y, type = "n", frame = FALSE)

# plot linear fit of y vs

abline(lm(y ~ x), lwd = 2, col = "blue")

# plot means of the two groups (t = 0 vs t = 1)

abline(h
abline(h

= mean(y[1 : (n/2)]), lwd = 3, col = "red")
mean(y[(n/2 + 1) : n]), lwd = 3, col = "red")

# plot linear fit of y vs = and t

fit <- Im(y ~ x + t)

# plot the two lines corresponding to (t = 0 vs t = 1)

abline(coef (fit) [1], coef(fit)[2], 1lwd = 3)

abline(coef (fit) [1] + coef(fit)[3], coef(fit)[2], lwd = 3)

# add in the actual data points

points(x[1 : (n/2)], y[1 : (n/2)], pch = 21, col = "black", bg = "lightblue", cex = 1)
points(x[(n/2 + 1) : n], y[(n/2 + 1) : nl, pch = 21, col = "black", bg = "salmon", cex =
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# print treatment and adjustment effects
rbind("Treatment Effect" = lm(y~t+x)$coef[2], "Adjustment Effect" = lm(y~t)$coef[2])

## t
## Treatment Effect -0.9801131
## Adjustment Effect 0.7640190

e in the above graph, the elements are as follows:

— red lines = means for two groups (t =0 vs t = 1) — two lines representing 1m(y ~ t)

— black lines = regression lines for two groups (t =0 vs t = 1) — two lines representing 1lm(y ~ t +
x)

— blue line = overall regression of y vs x — line representing 1lm(y ~ x)

o from the graph, we can see that

— disregarding/adjusting for x, the mean for salmon group is higher than the mean of the blue
group (adjustment effect is positive)

— when adding ¢ into the linear model, the treatment actually reverses the orders of the group — the
mean for salmon group is lower than the mean of the blue group (treatment effect is negative)

— group variable t is related to x

— some points overlap so it is possible to compare the subsets two groups holding x fixed

Simulation 4 - No Adjustment Effect
¢ the following code simulates the linear model,
Yi = Bo + Brzi + Bati + €

where ¢ = {0,1} — binary variable
e in this case, §j is set to 0 — no intercept
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# simulate data

n <- 100; t <- rep(c(0, 1), c(@/2, n/2)); x <- c(.5 + runif(n/2), runif(n/2));
# define parameters/coefficients

betaO <- 0; betal <- 2; beta2 <- 1; sigma <- .2

# generate outcome using linear model

y <- betald + x * betal + t * beta2 + rnorm(n, sd = sigma)

# set up azxes

plot(x, y, type = "n", frame = FALSE)

# plot linear fit of y vs =

abline(lm(y ~ x), lwd = 2, col = "blue")

# plot means of the two groups (t = 0 vs t = 1)

abline(h = mean(y[1 : (n/2)]), 1lwd = 3, col = "red")

abline(h = mean(y[(n/2 + 1) : n]), lwd = 3, col = "red")

# plot linear fit of y vs = and t

fit <- 1m(y ~ x + t)

# plot the two lines corresponding to (t = 0 vs t = 1)

abline(coef (fit) [1], coef(fit)[2], lwd = 3)

abline(coef (fit) [1] + coef(fit)[3], coef(fit)[2], 1lwd = 3)

# add in the actual data points

points(x[1 : (n/2)], y[1 : (n/2)], pch = 21, col = "black", bg = "lightblue", cex = 1)
points(x[(n/2 + 1) : n], y[(n/2 + 1) : n], pch = 21, col = "black", bg = "salmon", cex = 1)

y
1.0 15 20 25 3.0

# print treatment and adjustment effects
rbind("Treatment Effect" = lm(y~t+x)$coef[2], "Adjustment Effect" = lm(y~t)$coef[2])

## t
## Treatment Effect 1.00082093
## Adjustment Effect 0.04008387

« in the above graph, the elements are as follows:

— red lines = means for two groups (t =0 vs t = 1) — two lines representing 1m(y ~ t)
— black lines = regression lines for two groups (t = 0 vs t = 1) — two lines representing 1lm(y ~ t +
x)
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— blue line = overall regression of y vs  — line representing 1m(y ~ x)
e from the graph, we can see that
— no clear relationship between group variable ¢t and Y
* two groups have similar distributions with respect to Y’

— treatment effect is substantial

x separation of regression lines is large

groups
— group variable t is not related to x
* distribution of each group (salmon vs light blue) of Y vs X is effectively the same

— lots of direct evidence for comparing two groups holding X fixed

Simulation 5 - Binary Interaction

 the following code simulates the linear model,
Yi = Bo + Brwi + Bati + Bawit; + €

where ¢ = {0,1} — binary variable
e in this case, §y and 5 are set to 0

# simulate data

n <- 100; t <- rep(c(0, 1), c(@n/2, n/2)); x <~ c(runif(n/2, -1, 1), runif(n/2, -1, 1));
# define parameters/coefficients

betal <- 0; betal <- 2; beta2 <- 0; beta3 <- -4; sigma <- .2

# generate outcome using linear model

y <- beta0d + x * betal + t * beta2 + t * x * beta3 + rnorm(n, sd = sigma)

# set up azxes

plot(x, y, type = "n", frame = FALSE)

# plot linear fit of y vs =

abline(lm(y ~ x), lwd = 2, col = "blue")

# plot means of the two groups (t = 0 vs t = 1)

abline(h = mean(y[1 : (n/2)]), lwd = 3, col = "red")

abline(h = mean(y[(n/2 + 1) : n]), lwd = 3, col = "red")

# plot linear fit of y vs ¢ and t and interaction term

fit <- Im(y ~ x + t + I(x * t))

# plot the two lines corresponding to (t = 0 vs t = 1)

abline(coef (fit) [1], coef(fit)[2], 1lwd = 3)

abline(coef (fit) [1] + coef(fit)[3], coef(fit)[2] + coef(fit) [4], 1lwd = 3)

# add in the actual data points

points(x[1 : (n/2)], y[1 : (n/2)], pch = 21, col = "black", bg = "lightblue", cex = 1)
points(x[(n/2 + 1) : n], y[(n/2 + 1) : n], pch = 21, col = "black", bg = "salmon", cex
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e in the above graph, the elements are as follows:

— red lines = means for two groups (t =0 vs t = 1) — two lines representing 1m(y ~ t)

— black lines = regression lines for two groups (t =0 vs t = 1) — two lines representing 1lm(y ~ t +
X + t*x)

— blue line = overall regression of y vs  — line representing 1m(y ~ x)

* this is completely meaningless in this case
e from the graph, we can see that

— treatment effect does not apply since it varies with x

* impact of treatment/group variable reverses itself depending on x

adjustment effect is effectively zero as the means of the two groups are very similar
both intercept and slope of the two lines depend on the group variable ¢

— group variable and x are unrelated

lots of information for comparing group effects holding x fixed

Simulation 6 - Continuous Adjustment

o the following code simulates the linear model,
Yi = Bo + Biz1i + Baxai + €

# simulate data

p <- 1; n <~ 100; %2 <- runif(n); x1 <- p * runif(n) - (1 - p) * x2
# define parameters/coefficients

betal0 <- 0; betal <- 1; beta2 <- 4 ; sigma <- .01

# generate outcome using linear model

y <- beta0 + xl1 * betal + beta2 * x2 + rnorm(n, sd = sigma)

# plot y vs =1 and z2

gplot(xl, y) + geom_point(aes(colour=x2)) + geom_smooth(method = 1lm)
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e in the above graph, we plotted y vs 1 with x5 denoted as the gradient of color from blue to white
e to investigate the bivariate relationship more clearly, we can use the following command from the rgl
package to generate 3D plots

rgl::plot3d(xl, x2, y)
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e residual plot with effect of x5 removed from both y and x;

# plot the residuals for y and z1 with z2 removed
plot(resid(1m(xl ~ x2)), resid(lm(y ~ x2)), frame = FALSE,
col = "black", bg = "lightblue", pch = 21, cex = 1)

# add linear fit line

abline(Im(I(resid(Im(y ~ x2))) ~ I(resid(Im(xl ~ x2)))), lwd = 2)
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resid(Im(y ~ x2))
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resid(Im(x1 ~ x2))

o from the generated plots above, we can see that

— x1 is unrelated to zo
— x9 strongly correlated to y
— relationship between 1 and y (loosely correlated — R? = 0.09) largely unchanged by when x,
is considered
x To captures the vast majority of variation in data
* there exists almost no residual variability after removing xo

Summary and Considerations

e modeling multivariate relationships is difficult

— modeling for prediction is fairly straight forward

— interpreting the regression lines is much harder, as adjusting for variables can have profound effect
on variables of interest

e it is often recommended to explore with simulations to see how inclusion or exclusion of another variable
affects the relationship of variable of interest and the outcome

o variable selection simply affects associations between outcome and predictors, using the model to
formulate causal relationship are even more difficult (entire field dedicated to this — causal inference)
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Residuals and Diagnostics

e recall that the generalized linear model is defined as

P
Y, = ZXikﬁj + €
k=1

where ¢; N(0,02%)
e the predicted outcome, Y;, is defined as

N

Y; Xik/éj

[
NS

£
Il

1
e the residuals, e;, is defined as
p
a=Yi-Yi=Y; =) Xub,
k=1
o the unbiased estimate for residual variation is defined as

~2 _ Z?:l 612

Oresid — n—p
where the denominator is n — p so that E[62] = o2
o to evaluate the fit and residuals of a linear model generated by R (i.e. fit <- 1m(y~x), we can use
the plot (fit) to produce a series of 4 diagnostic plots

— Residuals vs Fitted = plots ordinary residuals vs fitted values — used to detect patterns for
missing variables, heteroskedasticity, etc

— Scale-Location = plots standardized residuals vs fitted values — similar residual plot, used to
detect patterns in residuals

— Normal Q-Q = plots theoretical quantiles for standard normal vs actual quantiles of standardized
residuals — used to evaluate normality of the errors

— Residuals vs Leverage = plots cooks distances comparison of fit at that point vs potential
for influence of that point — used to detect any points that have substantial influence on the
regression model

e example

# load swiss data and

data(swiss)
# run linear regression on Fertility vs all other predictors
fit <- lm(Fertility ~ . , data = swiss)

# generate diagnostic plots in 2 x 2 panels
par(mfrow = c(2, 2)); plot(fit)
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Outliers and Influential Points

e outlier = an observation that is distant from the other observations of the data set

— can be results of spurious or real processes
— can conform to the regression relationship (i.e being marginally outlying in X or Y, but not outlying
given the regression relationship)

# generate data

n <- 100; x <- rnorm(n); y <- x + rnorm(n, sd = .3)
# set up azxes

plot(c(-3, 6), c(-3, 6), type = "n",
# plot regression line for y vs x
abline(lm(y ~ x), lwd = 2)

# plot actual (z, y) pairs

points(x, y, cex = 1, bg = "lightblue", col = "black", pch = 21)
# plot 4 points of interest

frame = FALSE, xlab = "X", ylab = "Y")

points(0, 0, cex = 1.5, bg = "darkorange", col = "black", pch = 21)
points(0, 5, cex = 1.5, bg = "darkorange", col = "black", pch = 21)
points(5, 5, cex = 1.5, bg = "darkorange", col = "black", pch = 21)
points(5, 0, cex = 1.5, bg = "darkorange", col = "black", pch = 21)
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o different outliers can have varying degrees of influence

influence = actual effect on model fit
leverage = potential for influence

« in the plot above, we examine 4 different points of interest (in orange)

lower left: low leverage, low influence, not an outlier in any sense
upper left: low leverage, low influence, classified as outlier because it does not conform to the
regression relationship
x Note: this point, though far away from the rest, does not impact the regression line since it
lies in the middle of the data range because the regression line must always pass through the
mean/center of observations
upper right: high leverage, low influence, classified as outlier because it lies far away from the
rest of the data
x NNote: this point has low influence on regression line because it conforms to the overall
regression relationship
lower right: high leverage, high influence, classified as outlier because it lies far away from the
rest of the data AND it does not conform to the regression relationship

Influence Measures

e there exists many pre-written functions to measure influence of observations already in the stats
package in R

Note: typing in ?influence.measures in R will display the detailed documentation on all available
functions to measure influence

Note: the model argument referenced in the following functions is simply the linear fit model
generated by the lm function (i.e. model <- Im(y~z)

rstandard(model) = standardized residuals — residuals divided by their standard deviations
rstudent (model) = standardized residuals — residuals divided by their standard deviations,
where the i*" data point was deleted in the calculation of the standard deviation for the residual
to follow a t distribution

hatvalues(model) = measures of leverage

dffits(model) = change in the predicted response when the it" point is deleted in fitting the
model
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x effectively measures influence of a point on prediction
— dfbetas (model) = change in individual coefficients when the i*” point is deleted in fitting the
model
x effectively measures influence of the individual coefficients
— cooks (model) .distance = overall change in coefficients when the i*" point is deleted
— resid(model) = returns ordinary residuals
— resid(model)/(1-hatvalues(model)) = returns PRESS residuals (i.e. the leave one out cross
validation residuals)
x PRESS residuals measure the differences in the response and the predicted response at data
point ¢, where it was not included in the model fitting

x effectively measures the prediction error based on model constructed with every other point
but the one of interest

Using Influence Measures

e the purpose of these functions are to probe the given data in different ways to diagnose different
problems

— patterns in residual plots (most important tool) — generally indicate some poor aspect of model
fit

* heteroskedasticity — non-constant variance
* missing model terms
* temporal patterns — residuals versus collection order/index exhibit pattern

— residual Q-Q plots plots theoretical quantile vs actual quantiles of residuals

* investigates whether the errors follow the standard normal distribution

leverage measures (hat values) measures the potential to influence the regression model

* only depend on «x or predictor variables
x can be useful for diagnosing data entry errors

— influence measures (i.e. dfbetas) measures actual influence of points on the regression model

* evaluates how deleting or including this point impact a particular aspect of the model

e it is important to to understand these functions/tools and use carefully in the appropriate context
e not all measures have meaningful absolute scales, so it may be useful to apply these measures to
different values in the same data set but almost never to different datasets

Example - Outlier Causing Linear Relationship

# generate random data and point (10, 10)

x <= ¢(10, rnorm(n)); y <- c(10, c(rnorm(n)))

# plot y vs

plot(x, y, frame = FALSE, cex = 1, pch = 21, bg = "lightblue", col = "black")
# perform linear rTegression

fit <- Im(y ~ x)

# add regression line to plot

abline(fit)
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e data generated

— 100 points are randomly generated from the standard normal distribution
— point (10, 10) added to the data set

e there is no regression relationship between X and Y as the points are simply random noise

o the regression relationship was able to be constructed precisely because of the presence of the point (10,
10)

— R? = 0.26044

— a single point has created a strong regression relationship where there shouldn’t be one
* point (10, 10) has high leverage and high influence

— we can use diagnostics to detect this kind of behavior

o dfbetas(fit) = difference in coeflicients for including vs excluding each data point

— the function will return a n x m dataframe, where n = number of values in the original dataset,
and m = number of coefficients

— for this example, the coefficients are By (intercept), and S; (slope), and we are interested in the
slope

# calculate the dfbetas for the slope the first 10 points
round(dfbetas(fit) [1 : 10, 2], 3)

## 1 2 3 4 5 6 7 8 9 10
## 7.375 -0.078 -0.090 -0.098 0.003 -0.118 -0.001 0.025 -0.133 -0.031

« as we can see from above, the slope coefficient would change dramatically if the first point (10, 10)
is left out

e hatvalues(fit) = measures the potential for influence for each point

# calculate the hat wvalues for the first 10 points
round (hatvalues(fit) [1 : 10], 3)

## 1 2 3 4 5 6 7 8 9 10
## 0.508 0.020 0.012 0.013 0.010 0.013 0.010 0.013 0.023 0.012
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 again, as we can see from above, the potential for influence is very large for the first point (10,
10)

Example - Real Linear Relationship

# generate data

x <- rnorm(n); y <- x + rnorm(n, sd = .3)

# add an outlier that fits the relationship

x <= c(5, x); y <= c(5, y)

# plot the (z, y) pairs

plot(x, y, frame = FALSE, cex = 1, pch = 21, bg = "lightblue", col = "black")
# perform the linear regresstion

fit2 <- 1m(y ~ x)

# add the regresstion line to the plot

abline(fit2)

e data generated

— 100 directly correlated points are generated
— point (5, 5) added to the data set

e there is a linear relationship between X and Y

— R? =0.9517188
— point (5, 5) has high leverage and low influence

# calculate the dfbetas for the slope the first 10 points
round (dfbetas(fit2) [1 : 10, 2], 3)

## 1 2 3 4 5 6 7 8 9 10
## -0.093 -0.029 -0.012 -0.007 0.080 0.114 0.063 -0.035 -0.006 0.026
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# calculate the hat wvalues for the first 10 points
round (hatvalues (fit2) [1 : 10], 3)

## 1 2 3 4 5 6 7 8 9 10
## 0.164 0.013 0.010 0.011 0.012 0.014 0.014 0.014 0.011 0.012

e as we can see from above, the point (5, 5) no longer has a large dfbetas value (indication of low
influence) but still has a substantial hatvalue (indication of high leverage)

— this is in line with out expectations

Example - Stefanski TAS 2007

o taken from Leonard A. Stefanski’s paper Residual (Sur)Realism
« data set can be found here
o the data itself exhibit no sign of correlation between the variables

# read data

data <- read.table('http://wwwé.stat.ncsu.edu/~stefanski/NSF_Supported/Hidden_Images/orly_owl_files/orl
header = FALSE)

# construct pairwise plot

pairs(data)
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# perform regression on V1 with all other predictors (omitting the intercept)
fit <- Im(Vl ~ . - 1, data = data)

# print the coefficient for linear model

summary (fit) $coef

##t Estimate Std. Error t value Pr(>|tl)
## V2 0.9856157 0.12798121 7.701253 1.989126e-14
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## V3 0.9714707 0.12663829 7.671225 2.500259e-14
## V4 0.8606368 0.11958267 7.197003 8.301184e-13
## V5 0.9266981 0.08328434 11.126919 4.778110e-28

e as we can see from above, the p-values for the coefficients indicate that they are significant
o if we take a look at the residual plot, an interesting pattern appears

# plot the residuals vs fitted wvalues
plot(predict(fit), resid(fit), pch = '.")

resid(fit)
0
|

predict(fit)
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Model Selection
“A model is a lense through which to look at your data” — Scott Zeger
“There’s no such thing as a correct model” — Brian Caffo

e goal for modeling = find parsimonious, interpretable representations of data that enhance
our understanding

e whichever model connects data to a true, parsimonious statement would be best model
« like nearly all aspects of statistics, good modeling decisions are context dependent
e good model for prediction # model to establish causal effects

— prediction model may tolerate more variables and variability

Rumsfeldian Triplet

“There are known knowns. These are things we know that we know. There are known unknowns.
That is to say, there are things that we know we don’t know. But there are also unknown
unknowns. There are things we don’t know we don’t know.” — Donald Rumsfeld

e known knowns = regressors that we know and have, which will be evaluated to be included in the
model

e known unknowns = regressors that we but don’t have but would like to include in the model
— didn’t or couldn’t collect the data

e unknown unknowns = regressors that we don’t know about that we should have included in the
model

General Rules

e omitting variables — generally results in increased bias in coeflicients of interest

— exceptions are when the omitted variables are uncorrelated with the regressors (variables of
interest/included in model)

x Note: this is why randomize treatments/trials/experiments are the norm; it’s the best strategy
to balance confounders, or maximizing the probability that the treatment variable is uncorrelated
with variables not in the model

* often times, due to experiment conditions or data availability, we cannot randomize

* however, if there are too many unobserved confounding variables, even randomization won’t

help

o including irrelevant /unnecessary variables — generally increases standard errors (estimated
standard deviation) of the coefficients

— Note: including any new variables increases true standard errors of other regressors, so it is not
wise to idly add variables into model

o whenever highly correlated variables are included in the same model — the standard error and therefore
thevariance of the model increases — this is known as variance inflation

— actual increase in standard error of coefficients for adding a regressor = estimated by the ratio of
the estimated standard errors minus 1, or in other words

o ,

_ Yy~mwitao

Aa | adding ©o — ~ A -1
Oyr~ay

for all coefficients for the regression model
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x example: if standard error of the §; of y~x1+x2 = 1.5 and standard error for the 3; of y~x1
= 0.5, then the actual increase in standard error of the 51 = 1.5/0.5 - 1 = 200%

— Note: when the regressors added are orthogonal (statistically independent) to the regressor of
interest, then there is no variance inflation

* variance inflation factor (VIF) = the increase in the variance for the i, regressor compared
to the ideal setting where it is orthogonal to the other regressors
* /VIF = increase in standard error

— Note: variance inflation is only part of the picture in that sometimes we will include variables
even though they dramatically inflate the wvariation because it is an empirical part of the
relationship we are attempting to model

e as the number of non-redundant variables increases or approaches n, the model approaches a perfect
fit for the data

— R? monotonically increases as more regressors are included
— Sum of Squared Errors (SSE) monotonically decreases as more regressors are included

Example - RZ2 v n

e for the simulation below, no actual regression relationship exist as the data generated are simply
standard normal noise

« it is clear, however, that as p, the number of regressors included in the model, approaches n, the R?
value approaches 1.0, which signifies perfect fit

# set number of measurements
n <- 100
# set up the azes of the plot
plot(c(l, n), O : 1, type = "n", xlab = "p", ylab = expression(R"2),
main = expression(paste(R"2, " vs n")))
# for each wvalue of p from 1 to n
r <- sapply(l : n, function(p){
# create outcome and p regressors
y <- rnorm(n); x <- matrix(rnorm(n * p), n, p)
# calculate the R72
summary (Im(y ~ x))$r.squared
b
# plot the R™2 values and connect them with a line
lines(1 : n, r, lwd = 2)
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R2 VS n
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Adjusted R?

« recall that R? is defined as the percent of total variability that is explained by the regression model, or

R? — regression variation _ S (Y- }?)2 L Var(e;)
total variation S (Y —Y)?2 Var(Y;)

=1

o Estimating R? with the above definition is acceptable when there is a single variable, but it becomes
less and less helpful as the number of variables increases

— as we have shown previously, R? always increases as more variables are introduced and is thus
biased

o adjusted R? is a better estimate of variability explained by the model and is defined as

~ Var(e:) o 1
Var(V;) n—-k—1

Rl =1

where n = number of observations, and k& = number of predictors in the model

— since k is always greater than zero, the adjusted R? is always smaller than the unadjusted R?
— adjusted R? also penalizes adding large numbers of regressors, which would have inflated the
unadjusted R?

Example - Unrelated Regressors

e in the simulation below, outcome y is only related to x
— x9 and x3 are random noise

e we will run 1000 simulations of 3 linear regression models, and calculate the standard error of the
slope

— Yy VS 21
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— Y VS T1 + T2
— Yy VS X1 + T + T3

# simulate data
n <- 100; nosim <- 1000
# generate 3 random nmoise, unrelated variables
x1 <- rnorm(n); x2 <- rnorm(n); x3 <- rnorm(n);
# calculate betals of three different regression
betas <- sapply (1l : nosim, function(i){
# generate outcome as only related to zl
y <= x1 + rnorm(n, sd = .3)
# store betal of linear regression on y vs xl
c(coef (Im(y ~ x1))[2],
# store betal of linear regression on y vs zl1 and =2
coef (Im(y ~ x1 + x2))[2],
# store betal of linear regression on y vs 1 z2 and =3
coef (Im(y ~ x1 + x2 + x3))[2])
b
# calculate the standard error of the betals for the three regressions
betal.se <- round(apply(betas, 1, sd), 5)
# print results
rbind("y ~ x1" = c("betalSE" = betal.se[1]),
"y ~ x1 + x2" = betal.se[2],
"y ~ x1 + x2 + x3" = betal.se[3])

## betalSE.x1
#y ~ x1 0.03145
##y ~ x1 + x2 0.03145

## y ~ x1 + x2 + x3 0.03180

e as we can see from the above result, if we include unrelated regressors x5 and x3, the standard error
tncreases

Example - Highly Correlated Regressors / Variance Inflation

e in the simulation below, outcome y is related to

— x5 and x3 are highly correlated with x;
— x3 is more correlated with z; than xo

e we will run 1000 simulations of 3 linear regression models, and calculate the standard error of [31,
the coefficient of x1

— Y VS X1
— Y VS T1 + T2
— Yy vsxy+x2+ T3

# generate number of measurements and trials

n <- 100; nosim <- 1000

# generate random wvariables that are correlated with each other
x1 <~ rnorm(n); x2 <- x1/sqrt(2) + rnorm(n) /sqrt(2)

x3 <= x1 * 0.95 + rnorm(n) * sqrt(l - 0.9572);

# calculate the betals for 1000 trials
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betas <- sapply(l : nosim, function(i){
# generate outcome as only related to zi
y <= x1 + rnorm(n, sd = .3)
# store betal of linear regression on y vs xl
c(coef (Im(y ~ x1))[2],
# store betal of linear regression on y vs xl1 and =2
coef (Im(y ~ x1 + x2))[2],
# store betal of linear regression on y vs zl z2 and =3
coef (Im(y ~ x1 + x2 + x3))[2])
)
# calculate the standard error of the betal for the three regresstions
betal.se <- round(apply(betas, 1, sd), 5)
# print results
rbind("y ~ x1" = c("betalSE" = betal.sel[1]),
"y ~ x1 + x2" = betal.se[2],
"y ~ x1 + x2 + x3" = betal.se[3])

## betalSE.x1
## y ~ x1 0.03210
## y ~ x1 + x2 0.04163

#y ~ x1 + x2 + x3 0.10384

e as we can see from above, adding highly correlated regressors drastically increases the standard
errors of the coefficients

e to estimate the actual change in variance, we can use the ratio of estimated variances for the [;
coefficient for the different models

— summary (fit)$cov.unscaled = returns p x p covariance matrix for p coefficients, with the
diagonal values as the true variances of coefficients

* summary(fit)$cov.unscaled[2,2] = true variance for the 3y

# generate outcome that is correlated with z1
y <= x1 + rnorm(n, sd = .3)
# store the variance of betal for the 1st model
a <- summary(lm(y ~ x1))$cov.unscaled[2,2]
# calculate the ratio of wvariances of betal for 2nd and 3rd models with respect to 1st model
c(summary (Im(y ~ x1 + x2))$cov.unscaled[2,2],
summary (Im(y~ x1 + x2 + x3))$cov.unscaled[2,2]) / a - 1

## [1] 0.6820404 9.0116426

# alternatively, the change in variance can be estimated by calculating ratio of trials variance
temp <- apply(betas, 1, var); temp[2 : 3] / temp[1] - 1

#i#t x1 x1
## 0.6817101 9.4636380

e as we can see from the above results

— adding x5 increases the variance by approximately 1 fold
— adding z2 and x3 increases the variance by approximately 9 folds

e the estimated values from the 1000 trials are different but close to the true increases, and they will
approach the true values as the number of trials increases
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Example: Variance Inflation Factors

o we will use the swiss data set for this example, and compare the following models

— Fertility vs Agriculture
— Fertility vs Agriculture + Examination
— Fertility vs Agriculture + Examination + Education

# load swiss data

data(swiss)

# run linear regression for Fertility vs Agriculture

fit <- lm(Fertility ~ Agriculture, data = swiss)

# vartance for coefficient of Agriculture

a <- summary(fit)$cov.unscaled[2,2]

# run linear regression for Fertility vs Agriculture + Ezamination

fit2 <- update(fit, Fertility ~ Agriculture + Examination)

# run linear regression for Fertility vs Agriculture + Examination + Education
fit3 <- update(fit, Fertility ~ Agriculture + Examination + Education)

# calculate ratios of wariances for Agriculture coef for fit2 and fit3 w.r.t fitl
c(summary (fit2)$cov.unscaled[2,2], summary(fit3)$cov.unscaled[2,2]) / a - 1

## [1] 0.8915757 1.0891588

e as we can see from above

— adding Examination variable to the model increases the variance by 89%
— adding Examination and Education variables to the model increases the variance by 109%

o we can also calculate the variance inflation factors for all the predictors and see how variance will
change by adding each predictor (assuming all predictor are orthogonal/independent of each other)

— [car library] vit (fit) = returns the variance inflation factors for the predictors of the given linear
model

# load car library

library(car)

# run linear regression on Fertility vs all other predictors

fit <- lm(Fertility ~ . , data = swiss)

# calculate the variance inflation factors

vif (fit)

#it Agriculture Examination Education Catholic
#i# 2.284129 3.675420 2.774943 1.937160
## Infant.Mortality

#it 1.107542

# calculate the standard error inflation factors

sqrt (vif (fit))

## Agriculture Examination Education Catholic
#i# 1.511334 1.917138 1.665816 1.391819
## Infant.Mortality

## 1.052398

e as we can see from the above results, Education and Examination both have relatively higher inflation
factors, which makes sense as the two variables are likely to be correlated with each other
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Residual Variance Estimates

 assuming that the model is linear with additive iid errors (with finite variance), we can mathematically
describe the impact of omitting necessary variables or including unnecessary ones

— underfitting the model — variance estimate is biased — FE[6?] # o2

— correctly fitting or overfitting the model — variance estimate is unbiased — E[6?] = o>

x however, if unnecessary variables are included, the variance estimate is larger than that of
the correctly fitted variables — Var(Gover fitted) > Var(Georrect)

* in other words, adding unnecessary variables increases the variability of estimate for the true

model

Covariate Model Selection

» automated covariate/predictor selection is difficult

— the space of models explodes quickly with interactions and polynomial terms
— Note: in the Practical Machine Learning class, many modern methods for traversing large
model spaces for the purposes of prediction will be covered

« principal components analysis (PCA) or factor analytic models on covariates are often useful for reducing
complex covariate spaces

— find linear combinations of variables that captures the most variation
e good experiment design can often eliminate the need for complex model searches during analyses

— randomization, stratification can help simply the end models
— unfortunately, control over the design is often limited

e it is also viable to manually explore the covariate space based on understanding of the data

— use covariate adjustment and multiple models to probe that effect of adding a particular predictor
on the model

— Note: this isn’t a terribly systematic or efficient approach, but it tends to teach you a lot about
the the data through the process

o if the models of interest are nested (i.e. one model is a special case of another with one or more
coefficients set to zero) and without lots of parameters differentiating them, it’s fairly possible to use
nested likelihood ratio tests (ANOVA) to help find the best model

— Analysis of Variance (ANOVA) works well when adding one or two regressors at a time
* anova(fitl, fit2, fit3) = performs ANOVA or analysis of variance (or deviance) tables
for a series of nested linear regressions models
— Note: it is extremely important to get the order of the models correct to ensure the results are
sensible
— an example can be found here

« another alternative to search through different models is the step-wise search algorithm that repeatedly
adds/removes regressors one at a time to find the best model with the least Akaike Information Criterion
(AIC)

— step(lm, k=df) = performs step wise regression on a given linear model to find and return best
linear model
x k=log(n) = specifying the value of k as the log of the number of observation will force the
step-wise regression model to use Bayesian Information Criterion (BIC) instead of the AIC
x Note: both BIC and AIC penalizes adding parameters to the regression model with an additional
penalty term; the penalty is larger for BIC than AIC
— MASS::stepAIC(1lm, k = df) = more versatile, rigorous implementation of the step wise regression
— an example can be found here
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Example: ANOVA

o we will use the swiss data set for this example, and compare the following nested models

— Fertility vs Agriculture
— Fertility vs Agriculture + Examination + Education
— Fertility vs Agriculture + Examination + Education + Catholic + Infant.Mortality

# three different regressions that are nested

fitl <- Im(Fertility ~ Agriculture, data = swiss)

fit3 <- update(fit, Fertility ~ Agriculture + Examination + Education)

fitbs <- update(fit, Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality)
# perform ANOVA

anova(fitl, fit3, fith)

## Analysis of Variance Table

##

## Model 1: Fertility ~ Agriculture

## Model 2: Fertility ~ Agriculture + Examination + Education

## Model 3: Fertility ~ Agriculture + Examination + Education + Catholic +

## Infant.Mortality

##  Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 45 6283.1

## 2 43 3180.9 2 3102.2 30.211 8.638e-09 *x*x

## 3 41 2105.0 2 1075.9 10.477 0.0002111 *x**

## -

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

¢ the ANOVA function returns a formatted table with the follow information

— Res.Df = residual degrees of freedom for the models

— RSS = residual sum of squares for the models, measure of fit

— Df = change in degrees of freedom from one model to the next

— Sum of Sq = difference/change in residual sum of squares from one model to the next

— F = F statistic, measures the ratio of two scaled sums of squares reflecting different sources of

variability
RSS; —RSSy
_ b2—p1
= RSS,
n—p2

where p; and p; = number of parameters in the two models for comparison, and n = number of
observations
— Pr(>F) = p-value for the F statistic to indicate whether the change in model is significant or not

e from the above result, we can see that both going from first to second, and second to third models
result in significant reductions in RSS and better model fits

Example: Step-wise Model Search

o we will use the mtcars data set for this example, and perform step-wise regression/model selection
algorithm on the following initial model

— Miles Per Gallon vs Number of Cylinder + Displacement 4+ Gross Horse Power + Rear Axle Ratio
+ Weight
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# load the mtcars data starting regression model

data(mtcars); fit <- lm(mpg ~ cyl + disp + hp + drat + wt, data = mtcars)
# step-wise search using BIC

step(fit, k = log(nrow(mtcars)))

## Start: AIC=73.75
## mpg ~ cyl + disp + hp + drat + wt

##

#i# Df Sum of Sq RSS AIC
## - drat 1 3.018 170.44 70.854
## - disp 1 6.949 174.38 71.584
## - cyl 1 15.411 182.84 73.100
## <none> 167.43 73.748

## - hp 1 21.066 188.49 74.075
# - wt 1 T77.476 244.90 82.453
##

## Step: AIC=70.85

## mpg ~ cyl + disp + hp + wt

##

## Df Sum of Sq RSS AIC
## - disp 1 6.176 176.62 68.528
## - hp 1 18.048 188.49 70.609
## <none> 170.44 70.854

# - cyl 1 24.546 194.99 71.694
## - wt 1 90.925 261.37 81.069
##

## Step: AIC=68.53

## mpg ~ cyl + hp + wt

##

#i# Df Sum of Sq RSS AIC
## - hp 1 14.551 191.17 67.595
## - cyl 1 18.427 195.05 68.237

## <none> 176.62 68.528
## - wt 1 115.354 291.98 81.147
#

## Step: AIC=67.6
## mpg ~ cyl + wt

##

## Df Sum of Sq RSS AIC
## <none> 191.17 67.595
## - cyl 1 87.15 278.32 76.149

## - wt 1 117.16 308.33 79.426

##

## Call:

## 1m(formula = mpg ~ cyl + wt, data = mtcars)
##

## Coefficients:

## (Intercept) cyl Wt

#it 39.686 -1.508 -3.191

e as we can see from above, the best model that captures most of the variability in the data is simply
mpg ~ cyl + wt
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General Linear Models Overview

o limitations of linear models:

— response can be discrete (i.e. 0, 1, etc.) or strictly positive — linear response models don’t make
much sense
— if outcome must be positive, Gaussian errors (£ errors) don’t make sense as negative outcomes are
possible
— transformations on predictors (log + 1) are often hard to interpret
* modeling the data on the scale that it was collected is most ideal
x even for interpretable transformations, natural logarithms specifically, aren’t applicable for
negative/zero values

e general linear models = introduced in 1972 RSSB paper by Nelder and Wedderburn and has 8 parts

1. exponential family model for response/outcome (i.e. Gaussian, Bernoulli distribution)
2. systematic component for linear predictor — incorporates the information about the independent
variables into the model

— denoted by n = X8 where X is a matrix of independent variables/predictors and § is the
coefficients

3. link function that connects means of the outcome/distribution to linear predictor

— the relationship is defined as n = g(u), or the linear predictor i is a function of the mean of
the distribution pu

Simple Linear Model

e exponential family distribution: Gaussian distribution, assumed Y; ~ N (j;,0?)
o linear predictor: m; =Y h_, Xix B
o link function : g(p) =n=p

— for linear models, g(u) = p, so n; = p;

result: the same likelihood model (see derivation)as the additive Gaussian error linear model

p
Y, = ZXikﬁk + ¢
=1

where ¢; ¢ N(0,0?)

Logistic Regression
o exponential family distribution: binomial/Bernoulli distribution, assumed Y; ~ Bernoulli(p;) where
the probability of success is u;
— due to the properties of the binomial/Bernoulli distribution, F[Y;] = p; where 0 < p; <1
o linear predictor: n; =Y 1_, XirBk
o link function : g(u) =n = log (ﬁ)
— odds for success for a binomial/Bernoulli distribution is defined as

odds = P
L—p
— logit is defined as
log(odds) = log ﬁ
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x Note: the log here is the natural log

— inverse logit is defined as
exp(7:)
1+ exp(n;)

P =

— complement of inverse logit is
1

S T o)

o result: the likelihood model

pdt (L= )™

eXp 771 Yi 1 1-y;
1+ exp(n;) 1+ exp(n;)

=
=

]
:13

@
Il
_

(plug in p; and 1 — p; from above)

||
—=

@
Il
—

n o -
| exp 772 eXp i 1
multiply 2™ term by B
( pty exp(n 11;[1 (1 + exp(n;) ) (1 +exp( m)> <exp(m)>
- o) 1—y;
[ = z
(simpli fy) };[1 (1 + exp(n;) ) (exp )
n exp 777,
l fr—
(S’me ’éfy 1;[ <1 + exp 771 > eXp
(simplify) = ﬁ D
LT+ exp(nm:)

n
Zl;IllJrexp (i)

(change form of numerator) = exp (Z ymz>

n p n
(substitute 1;) = L(f) = exp (Z Yi Zszﬂk ) H 1+ exp (le XinBr)
— X k=1 [

i=1

— maximizing the likelihood L(/) (solving for g—{; = 0) would return a set of optimized coefficients g
that will fit the data

Poisson Regression

o exponential family distribution: Poisson distribution, assumed Y; ~ Poisson(u;) where E[Y;] = p;
o linear predictor: n; =Y 1_, XirBk
e link function : g(u) =n = log(u)

— Note: the log here is the natural log

— since €* is the inverse of log(z), then 7; = log(u;) can be transformed into p; = e™
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e result: the likelihood model

L(8) = [Jw) " utre

7

—

3 |l

i \Yi
(substitute p; = ™) = H (yé,eZni
i=1 7"
o exp(miyi)
; _ Ty &elmyi)
(trans form) = ]| yi! exp(en)

i=1

(taking log of both sides) L(f) = Zmyi — Zem - Zlog(yi!)
i=1 i=1 i=1

n n
(since y; is given, we can ignore logy;!) L(3) x Zmyi — Ze’“
i=1 i=1

p n p n P
(substitute 1, = " Xu) = L) x Y (z mm) Y e (z mm)

k=1 i=1 k=1 i=1 k=1
— maximizing the log likelihood L(beta) (solving for % = 0) would return a set of optimized

coefficients [ that will fit the data

Variances and Quasi-Likelihoods

o in each of the linear/Bernoulli/Poisson cases, the only term in the likelihood functions that depend on

the data is B . ) ) .
Symi=> vy XiBe =Y Be Y Xiwti
i=1 k=1 k=1 i=1

i=1
o this means that we don’t need need all of the data collected to maximize the likelihoods/find the
coefficients 3, but only need > .| Xiry;

— Note: this simplification is a consequence of choosing “canonical” link functions, g(u), to be in
specific forms

« [Derivation needed] all models achieve their mazimum at the root of the normal equations
n
Y —
Z (Y; Mz)Wi —0
— Var(Y;)
i=1
where W; = w or the derivative of the inverse of the link function

— Note: this is similar to deriving the least square equation where the middle term must be set to 0
to find the solution (see Derivation for ()
— Note: p; =g (i) =g (35—, XirBe), the normal functions are really functions of 3

o the variance, Var(Y;), is defined as

— linear model: Var(Y;) = 0%, where o is constant
— binomial model: Var(Y;) = pi(1 — ;)
— Poisson model: Var(Y;) = p;
e for binomial and Poisson models, there are strict relationships between the mean and variance that
can be easily tested from the data:
— binomial: mean = p;, variance = p;(1 — ;)
— Poisson: mean = p;, variance = y;
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o it is often relevant to have a more flexible variance model (i.e. data doesn’t follow binomial /Poisson
distributions exactly but are approximated), even if it doesn’t correspond to an actual likelihood, so we
can add an extra parameter, ¢, to the normal equations to form quasi-likelihood normal equations

Yri — M . - Y; — Mg
binomial : Z MWZ = 0Poisson : Z w
— opi(l — i) G

n

W; =0

-1 .
where W, = agTW or the derivative of the inverse of the link function

— for R function glm(), its possible to specify for the model to solve using quasi-likelihood normal
equations instead of normal equations through the parameter family = quasi-binomial and
family = quasi-poisson respectively

— Note: the quasi-likelihoods models generally same properties as normal GLM

Solving for Normal and Quasi-Likelihood Normal Equations

e normal equations have to be solved iteratively

— the results are Bk, estimated coefficients for the predictors
— for quasi-likelihood normal equations, ¢ will be part of the results as well
— in R, Newton/Raphson’s algorithm is used to solve the equations

— asymptotics are used for inference of results to broader population (see Statistical Inference
course)

— Note: many of the ideas, interpretation, and conclusions derived from simple linear models are
applicable to GLMs

e predicted linear predictor responses are defined as
p A
N=> Xibh
k=1
e predicted mean responses can be solved from

fv=g"'()

o coefficients are interpreted as the expected change in the link function of the expected response
per unit change in X} holding other regressors constant, or

Br = g(BY[ Xy = 21 + 1, X = vuk]) — 9(E[Y[ Xk = 21, Xok = T0k])
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General Linear Models - Binary Models

o Bernoulli/binary models are frequently used to model outcomes that have two values

— alive vs dead

— win vs loss
success vs failure
disease vs healthy

» binomial outcomes = collection of exchangeable binary outcomes (i.e. flipping coins repeatedly) for
the same covariate data

— in other words, we are interested in the count of predicted 1s vs Os rather individual outcomes of 1
or 0

Odds

e odds are useful in constructing logistic regression models and fairly easy to interpret

— imagine flipping a coin with success probability p
x if heads, you win X
x if tails, you lose Y
— how should X and Y be set so that the game is fair?

Y
Elearnings] = Xp—-Y(1—-p)=0= —

— odds can be interpreted as “How much should you be willing to pay for a p probability of winning
a dollar?”
x if p > 0.5, you have to pay more if you lose than you get if you win
* if p < 0.5, you have to pay less if you lose than you get if you win

e odds are NOT probabilities
e odds ratio of 1 = no difference in odds or 50% - 50%

— — 05 __
_p—05$0dd8—m—1

— log odds ratio of 0 = no difference in odds

x p=0.5= odds = log (19‘35) =log(1)=0

e odds ratio < 0.5 or > 2 commonly a “moderate effect”
e relative risk = ratios of probabilities instead of odds, and are often easier to interpret but harder to

estimate
f)’l“(VVz‘Sz = 10)

— Note: relative risks often have boundary problems as the range of log(p) is (—oo, 0] where as
the range of logit 1%7 is (—o0, 00)
— for small probabilities Relative Risk ~ Odds Ratio but they are not the same!

Example - Baltimore Ravens Win vs Loss

o the data for this example can be found here

— the data contains the records 20 games for Baltimore Ravens, a professional American Football
team
— there are 4 columns
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ravenWinNum = 1 for Raven win, 0 for Raven loss
ravenWin = W for Raven win, L for Raven loss
ravenScore = score of the Raven team during the match

EE S

opponentScore = score of the Raven team during the match
# load the data

load("ravensData.rda")
head (ravensData)

##  ravenWinNum ravenWin ravenScore opponentScore

## 1 1 W 24 9
## 2 1 W 38 35
## 3 1 W 28 13
## 4 1 W 34 31
## 5 1 W 44 13
## 6 0 L 23 24

Example - Simple Linear Regression

« simple linear regression can be used model win vs loss for the Ravens
Wi =po+B1Si+ €

— W; = binary outcome, 1 if a Ravens win, 0 if not

— S; = number of points Ravens scored

— Bo = probability of a Ravens win if they score 0 points

— (1 = increase in probability of a Ravens win for each additional point
— ¢; = residual variation, error

e the expected value for the model is defined as

E[Wi|Si, Bo, B1] = Bo + B1Si
e however, the model wouldn’t work well as the predicted results won’t be 0 vs 1

— the error term, ¢;, is assumed to be continuous and normally distributed, meaning that the
prediction will likely be a decimal
— therefore, this is not a good assumption for the model

# perform linear regression
summary (lm(ravenWinNum ~ ravenScore, data = ravensData))

##

## Call:

## Im(formula = ravenWinNum ~ ravenScore, data = ravensData)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.7302 -0.5076 0.1824 0.3215 0.5719

##

## Coefficients:

#t Estimate Std. Error t value Pr(>ltl)

## (Intercept) 0.285032 0.256643 1.111 0.2814
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## ravenScore 0.015899 0.009059 1.7556 0.0963 .

## ——

## Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## Residual standard error: 0.4464 on 18 degrees of freedom

## Multiple R-squared: 0.1461, Adjusted R-squared: 0.09868

## F-statistic: 3.08 on 1 and 18 DF, p-value: 0.09625

e as expected, the model produces a poor fit for the data (Ridj = 0.0987)

o adding a threshold to the predicted outcome (i.e. if W; < 0.5,W; = 0) and using the model to predict
the results would be viable

— however, the coefficients for the model are not very interpretable

Example - Logistic Regression

o probability of Ravens win is defined as
Pr(WilSi, Bo, B1)

e odds is defined as
Pr(W;|Si, Bo, 1)

1 — Pr(W;|S;, Bo, B1)

which ranges from 0 to co
e log odds or logit is defined as

log ( PT(Wi|Si7ﬂO>Bl) )
1 — Pr(W;l|Si, Bo, B1)
which ranges from —oo to oo
e we can use the link function and linear predictors to construct the logistic regression model

9(pi) = log (1 - ) =1
Wi
P W’L S’i7 )
(substitute p; = Pr(W;|S;, Bo, 1)) g(p:) = log (1 _Z_ET(WWS%B?K)%)) —
Pr(Wil|S;, Bo, B1)
1 — Pr(W;|S;, Bo, 1)

(substitute m; = Bo + $1Si) = g(u;) = log ( ) = Bo + 1.5

which can also be written as

_exp(fo + B1Si)
PT‘(Wi|Si7603ﬁl) 1 +exp(50 + ﬂlsl)

o for the model

log ( Pr(W;|S;, Bo, B1)
1 — Pr(W;lS;, Bo, B1)
— Bo = log odds of a Ravens win if they score zero points
— 1 = log odds ratio of win probability for each point scored (compared to zero points)

OddS(SZ =5+ 1)

) = Bo + 1.5:

B1 =log (odds(S; = S; + 1)) — log (odds(S; = S;)) = log (

— exp(B1) = odds ratio of win probability for each point scored (compared to zero points)

OddS(Sl = Sz)

exp(f1) =
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e we can leverage the manupulate function vary §y and (3 to fit logistic regression curves for simulated
data

# set x walues for the points to be plotted
x <- seq(-10, 10, length = 1000)
# "library(manipulate) " is needed to use the manipulate function
manipulate (
# plot the logistic regression curve
plot(x, exp(betald + betal * x) / (1 + exp(betal + betal * x)),
type = "1", lwd = 3, frame = FALSE),
# slider for betal
betal = slider(-2, 2, step
# slider for betal
beta0 = slider(-2, 2, step = .1, initial = 0)

.1, initial = 2),

)
= 2
s 2
5
8 o |
+ o
o
s
8
3 o
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8
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g o |
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e we can use the glm(outcome ~ predictor, family = "binomial") to fit a logistic regression to the
data

# run logistic regression on data

logRegRavens <- glm(ravenWinNum ~ ravenScore, data = ravensData,family="binomial')
# print summary

summary (logRegRavens)

##

## Call:

## glm(formula = ravenWinNum ~ ravenScore, family = "binomial",
#t data = ravensData)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.7575 -1.0999 0.5305 0.8060 1.4947

##

## Coefficients:

#t Estimate Std. Error z value Pr(>lzl)
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## (Intercept) -1.68001 1.56412 -1.081 0.28

## ravenScore 0.10658 0.06674  1.597 0.11

##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 24.435 on 19 degrees of freedom

## Residual deviance: 20.895 on 18 degrees of freedom
## AIC: 24.895

##

## Number of Fisher Scoring iterations: 5

e as we can see above, the coefficients §y and $; are -1.68, 0.107, which are interpreted to be the log
odds ratios

e we can convert the log ratios as well as the log confidence intervals to ratios and confidence intervals
(in the same units as the data)

# take e"coefs to find the log ratios
exp(logRegRavens$coeff)

## (Intercept) ravenScore
## 0.1863724 1.1124694

# take e”log confidence interval to find the confidence intervals
exp(confint (logRegRavens))

## Waiting for profiling to be done...

## 2.5 % 97.5 %
## (Intercept) 0.005674966 3.106384
## ravenScore 0.996229662 1.303304

o Note: exp(xz) = 1+ x for small values (close to 0) of z, this can be a quick way to estimate the
coefficients

o we can interpret the slope, 31 as 11.247 % increase in probability of winning for every point scored

e we can interpret the intercept, Sy as 0.186 is the odds for Ravens winning if they scored 0 points

— Note: similar to the intercept of a simple linear regression model, the intercept should be interpreted
carefully as it is an extrapolated value from the model and may not hold practical meaning

e to calculate specific probability of winning for a given number of points

GXP(BO + 31Si)
1+ exp(Bo + B15:)

PT(VVVZ|SZ'7B0731) =

the resulting logistic regression curve can be seen below

# plot the logistic regression
plot(ravensData$ravenScore,logRegRavens$fitted,pch=19,col="blue" ,xlab="Score",ylab="Prob Ravens Win")
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Example - ANOVA for Logistic Regression

e« ANOVA can be performed on a single logistic regression, in which it will analyze the change in variances
with addition of parameters in the model, or multiple nested logistic regression (similar to linear models)

# perform analysis of wvariance
anova(logRegRavens,test="Chisq")

##
##
##
##
##
##
##
##
##
##
##
##
##
##

Analysis of Deviance Table
Model: binomial, link: logit
Response: ravenWinNum
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 19 24.435
ravenScore 1 3.5398 18 20.895 0.05991
Signif. codes: O 'x**x' 0.001 'sxx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

e ANOVA returns information about the model, link function, response, as well as analysis of variance
for adding terms

— Df = change in degrees of freedom

* the value 1 refers to adding the ravenScore parameter (slope)

— Deviance = measure of goodness of model fit compare to the previous model

— Resid. Dev = residual deviance for current model

— Pr(>Chi) = used to evaluate the significance of the added parameter

* in this case, the Deviance value of 3.54 is used to find the corresponding p-value from the
Chi Squared distribution, which is 0.06

Note: Chi Squared distribution with 1 degree of freedom is simply the squared of normal
distribution, so z statistic of 2 corresponds to 95% for normal distribution indicates that
deviance of 4 corresponds to approzimately 5% in the Chi Squared distribution (which is
what our result shows)
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Further resources

o Wikipedia on Logistic Regression

o Logistic regression and GLMs in R

e Brian Caffo’s lecture notes on: Simpson’s Paradox, Retrospective Case-control Studies
e Open Intro Chapter on Logistic Regression
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General Linear Models - Poisson Models

Poisson distribution is a useful model for counts and rates

— rate = count per unit of time
— linear regression with transformation is an alternative

count data examples

— calls to a call center
— number of flu cases in an area
— number of cars that cross a bridge

rate data examples

— percent of children passing a test
— percent of hits to a website from a country
— radioactive decay

e Poisson model examples

— modeling web traffic hits incidence rates
— approximating binomial probabilities with small p and large n
— analyzing contingency table data (tabulated counts for categorical variables)

Properties of Poisson Distribution

o aset of data X is said to follow the Poisson distribution, or X ~ Poisson(tA), if

(t)\)we—tk

P(X=x)= o

where z = 0,1,...

— A\ = rate or expected count per unit time
— t = monitoring time

« mean of Poisson distribution is E[X] = tA, thus E[X/t] = A
» variance of the Poisson is Var(X) = t\ = p(mean)

— Note: Poisson approaches a Gaussian/normal distribution as tA gets large

¢ below are the Poisson distributions for various values of A

# set up 1z3 panel plot

par(mfrow = c(1, 3))

# Poisson distribution for t = 1, and lambda = 2

plot(0 : 10, dpois(0 : 10, lambda = 2), type = "h", frame = FALSE)

# Poisson distribution for t = 1, and lambda = 10

plot(0 : 20, dpois(0 : 20, lambda = 10), type = "h", frame = FALSE)

# Poisson distribution for t = 1, and lambda = 100

plot(0 : 200, dpois(0 : 200, lambda = 100), type = "h", frame = FALSE)
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e as we can see from above, for large values of A, the distribution looks like the Gaussian

Example - Leek Group Website Traffic

o for this example, we will be modeling the daily traffic to Jeff Leek’s web site: http://biostat.jhsph.edu/
~jleek/

— the data comes from Google Analytics and was extracted by the rga package that can be found at
http://skardhamar.github.com/rga/

o for the purpose of the example, the time is always one day, so t = 1, Poisson mean is interpreted as
web hits per day

— if ¢t = 24, we would be modeling web hits per hour

e the data can be found here

# laod data

load("gaData.rda")

# convert the dates to proper formats

gaData$julian <- julian(gaData$date)

# plot visits vs dates
plot(gaData$julian,gaData$visits,pch=19,col="darkgrey",xlab="Julian",ylab="Visits")
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Example - Linear Regression

« the traffic can be modeled using linear model as follows
NH; = o+ p1JD; + €

— NH; = number of hits to the website

— JD; = day of the year (Julian day)

— Bp = number of hits on Julian day 0 (1970-01-01)
— (1 = increase in number of hits per unit day

— ¢; = variation due to everything we didn’t measure

e the expected outcome is defined as

E[NH;|JD;, Bo, B1] = Bo + p1JD;

# plot the wvisits vs dates
plot(gaData$julian,gaData$visits,pch=19,col="darkgrey",xlab="Julian",ylab="Visits")
# perform linear regression

1ml <- 1m(gaData$visits ~ gaData$julian)

# plot regression line

abline(1lml,col="red",lwd=3)
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Example - log Outcome

o if we are interested in relative increases in web traffic, we can the natural log of the outcome, so the
linear model becomes
log(NH;) = Bo + B1JD; + €
— log(NH;) = number of hits to the website
— JD; = day of the year (Julian day)
— Bo = log number of hits on Julian day 0 (1970-01-01)
— (1 = increase in log number of hits per unit day
— ¢; = variation due to everything we didn’t measure
e when we take the natural log of outcomes and fit a regression model, the exponentiated coefficients
estimate quantities based on the geometric means rather than the measured values
— ePlloe¥)] = geometric mean of Y
* geometric means are defined as

n

oF Diy los(yi) _ (H i)/

i=1

which is the estimate for the population geometric mean
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* as we collect infinite amount of data, [}, v;)*/™ — E[log(Y)]
— eP = estimated geometric mean hits on day 0
— ef1 = estimated relative increase or decrease in geometric mean hits per day
— Note: not we can not take the natural log of zero counts, so often we need to adding a constant
(i.e. 1) to construct the log model
x adding the constant changes the interpretation of coefficient slightly
% €1 is now the relative increase or decrease in geometric mean hits 4+ 1 per day

e the expected outcome is
Ellog(N H;|JD;, Bo, 81)] = Bo + B1J D;

round (exp(coef (Im(I(log(gaData$visits + 1)) ~ gaData$julian))), 5)

##  (Intercept) gaData$julian
## 0.00000 1.00231

e as we can see from above, the daily increase in hits is 0.2%

Example - Poisson Regression

e the Poisson model can be constructed as log of the mean
IOg (E[NH1|JD17 507 ﬂl]) = ﬁo + ﬂlJ-Dz

or in other form

E[NH;|J D, Bo, p1] = exp (Bo + 1 D;)

— NH; = number of hits to the website

— JD; = day of the year (Julian day)

— Bo = expected number of hits on Julian day 0 (1970-01-01)

— (1 = expected increase in number of hits per unit day

— Note: Poisson model differs from the log outcome model in that the coefficients are interpreted
naturally as expected value of outcome where as the log model is interpreted on the log scale of
outcome

e we can transform the Poisson model to
E[NH;|JD;, Bo, f1] = exp (Bo + B1JD;) = exp (Bo) exp (61 D;)

— p1 = E[NH;|JD; + 1, Bo, 1] — EIN H;|J Dy, Bo, B1]
— (1 can therefore be interpreted as the relative increase/decrease in web traffic hits per one day
increase

e glm(outcome~predictor, family = "poisson") = performs Poisson regression

# plot visits vs dates
plot(gaData$julian,gaData$visits,pch=19,col="darkgrey",xlab="Julian",ylab="Visits")
# construct Poisson regression model

glml <- glm(gaData$visits ~ gaData$julian,family="poisson")

# plot linear regression line in red

abline(1lml,col="red",lwd=3)

# plot Poisson regression line in
lines(gaData$julian,glmi$fitted,col="blue",lwd=3)
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e Note: the Poisson fit is non-linear since it is linear only on the log of the mean scale

Example - Robust Standard Errors with Poisson Regression

o variance of the Poisson distribution is defined to be the mean of the distribution, so we would expect
the variance to increase with higher values of X
e below is the residuals vs fitted value plot for the Poisson regression model

# plot residuals vs fitted values
plot(glmi$fitted,glmiPresiduals,pch=19,col="grey",ylab="Residuals",xlab="Fitted")
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e as we can see from above, the residuals don’t appear to be increasing with higher fitted values

e even if the mean model is correct in principle, there could always be a certain degree of model
mis-specification

e to account for mis-specifications for the model, we can use

1. glm(outcome~predictor, family = "quasi-poisson") = introduces an additional multiplica-
tive factor ¢ to denominator of model so that the variance is ¢u rather than just p (see Variances
and Quasi-Likelihoods)

2. more generally, robust standard errors (effectively constructing wider confidence intervals) can be
used

« model agnostic standard errors, implemented through the sandwich package, is one way to calculate
the robust standard errors

— algorithm assumes the mean relationship is specified correctly and attempts to get a general
estimates the variance that isn’t highly dependent on the model
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— it uses assumption of large sample sizes and asymptotics to estimate the confidence intervals that
is robust to model mis-specification

— Note: more information can be found at http://stackoverflow.com/ questions/ 3817182/
vcovhe-and-confidence-interval

# load sandwich package
library(sandwich)
# compute
confint.agnostic <- function (object, parm, level = 0.95, ...)
{
cf <- coef(object); pnames <- names(cf)
if (missing(parm))
parm <- pnames
else if (is.numeric(parm))
parm <- pnames [parm]
a <- (1 - level)/2; a <- c(a, 1 - a)
pct <- stats:::format.perc(a, 3)
fac <- qnorm(a)
ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(parm,
pct))
ses <- sqrt(diag(sandwich: :vcovHC(object))) [parm]
ci[l <- cflparm] + ses %o’ fac

ci
b
# regular confidence interval from Poisson Model
confint (glml)
#it 2.5 % 97.5 %

## (Intercept) -34.346577587 -31.159715656
## gaData$julian  0.002190043 0.002396461

# model agnostic standard errors
confint.agnostic(glml)

#it 2.5 % 97.5 Y
## (Intercept) -36.362674594 -29.136997254
## gaData$julian  0.002058147  0.002527955

e as we can see from above, the robust standard error produced slightly wider confidence intervals

Example - Rates

« if we were to model the percentage of total web hits that are coming from the Simply Statistics blog,
we could construct the following model

E[NHSS;|JD;, Bo, B1]/NH; = exp (Bo + B1JD;)

(take log of both sides) log (E[NHSS;|JD;, B, f1]) — log(NH;) = Bo + f1JD;
(move log(N H;) to right side) log (E[NHSS;|JD;, 5o, B1]) = log(NH;) + So + f1JD;

— when offset term, log(N H;), is present in the Poisson model, the interpretation of the coefficients
will be relative to the offset quantity
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— it’s important to recognize that the fitted response doesn’t change
— example: to convert the outcome from daily data to hourly, we can add a factor 24 so that the
model becomes
E[NHSS;|JD;, Bo, $1]/24 = exp (Bo + B1JD;)
(take log of both sides) log (E[NHSS;|JD;, 5o, 51]) —log(24) = By + 1 JD;
(move log(24) to right side) log (E[NHSS;|JD;, Bo, 51]) = log(24) + log(NH;) + 5o + p1JD;

e back to the rates model, we fit the Poisson model now with an offset so that the model is interpreted
with respect to the number of visits

— glm(outcome ~ predictor, offset = log(offset), family = "poisson") = perform Pois-
son regression with offset
— glm(outcome ~ predictor + log(offset)) = produces the same result

# perform Poisson regression with offset for number of visits

glm2 <- glm(gaData$simplystats ~ julian(gaData$date),offset=log(visits+1),
family="poisson",data=gaData)

# plot the fitted means (from simply statistics)

plot(julian(gaData$date) ,glm2$fitted,col="blue",pch=19,xlab="Date",ylab="Fitted Counts")

# plot the fitted means (total visit)

points(julian(gaData$date) ,glmi$fitted,col="red",pch=19)
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# plot the rates for simply stats

plot(julian(gaData$date) ,gaData$simplystats/(gaData$visits+1),col="grey",xlab="Date",
ylab="Fitted Rates",pch=19)

# plot the fitted rates for simply stats (visit/day)

lines(julian(gaData$date) ,glm2$fitted/ (gaData$visits+l) ,col="blue",1lwd=3)

Fitted Rates
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o Note: we added 1 to the log(visits) to address 0 values
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Further Resources

e Log-linear mMdels and Multi-way Tables
o Wikipedia on Poisson Regression

e Wikipedia on Overdispersion

o Regression Models for count data in R

e pscl package -

— often time in modeling counts, they maybe more zero counts in the data than anticipated, which
the regular Poisson model doesn’t account for
— the function zeroinf1l fits zero inflated Poisson (ziP) models to such data
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Fitting Functions

« scatterplot smoothing = fitting functions (multiple linear models, piece-wise zig-zag lines) to data
in the form Y; = f(X;) + ¢
e consider the model

d
Yi= B0+ BiXo+ ) (2 — &)y + &
k=1

where (a); = a if @ > 0 and 0 otherwise and & < ... < ¢y are known knot points
e the mean function .
EY;] = Bo+ BiXi + (@i — &)+
k=1

is continuous at the knot points

— for & =5, the expected value for Y; as x; approaches 5 from the left is

ElYile=sjiest = Bo + Brzi + (i — 5) 47
(since x; < 5) EYile—sjiert = Bo + P

— the expected value for Y; as x; approaches 5 from the right is

E[Yile=sjright = Bo + Biwi + (i — 5) 1k
(since x; > 5) ElYile—s|right = Bo + Prxi + (xi — 5) 1k
(simplify) EYile—=s|right = Bo — 5V + (B1 + )2

— as we can see from above, the right side is just another line with different intercept (89 — 5yx) and

slope (1 + k)
— so as x approaches 5, both sides converge

Considerations

e basis = the collection of regressors

o single knot point terms can fit hockey-stick-like processes

o these bases can be used in GLMs (as an additional term/predictor) as well
e issue with these approaches is the large number of parameters introduced

— requires some method of regularization, or penalize for large number of parameters (see Practical
Machine Learning course)
— introducing large number of knots have significant consequences

Example - Fitting Piecewise Linear Function

# simulate data

n <- 500; x <- seq(0, 4 * pi, length = n); y <- sin(x) + rnorm(n, sd = .3)

# define 20 knot points

knots <- seq(0, 8 * pi, length = 20);

# define the ()+ function to only take the values that are positive after the knot pt
splineTerms <- sapply(knots, function(knot) (x > knot) * (x - knot))

# define the predictors as X and spline term

xMat <- cbind(x, splineTerms)

# fit linear models for y vs predictors
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yhat <- predict(lm(y ~ xMat))

# plot data points (z, y)

plot(x, y, frame = FALSE, pch = 21, bg = "lightblue")
# plot fitted values

lines(x, yhat, col = "red", lwd = 2)
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Example - Fitting Piecewise Quadratic Function

o adding squared terms makes it continuous AND differentiable at the knot points, and the model

becomes
d

Yi = Bo+ BiXi+ BoXP + Y (xi— &) + e
k=1

where (a)3 = a® if a > 0 and 0 otherwise
e adding cubic terms makes it twice continuously differentiable at the knot points, etcetera

# define the knot terms in the model

splineTerms <- sapply(knots, function(knot) (x > knot) * (x - knot)~2)
# define the predictors as z, ¢ 2 and knot terms

xMat <- cbind(x, x~2, splineTerms)

# fit linear models for y vs predictors

yhat <- predict(lm(y ~ xMat))

# plot data points (z, y)

plot(x, y, frame = FALSE, pch = 21, bg = "lightblue")

# plot fitted values

lines(x, yhat, col = "red", lwd = 2)
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Example - Harmonics using Linear Models

e discrete Fourier transforms = instance of linear regression model, use sin and cosine functions as
basis to fit data

e to demonstrate this, we will generate 2 seconds of sound data using sin waves, simulate a chord, and
apply linear regression to find out which notes are playing

# frequencies for white keys from c4 to cb

notes4 <- c(261.63, 293.66, 329.63, 349.23, 392.00, 440.00, 493.88, 523.25)
# generate sequence for 2 seconds

t <- seq(0, 2, by = .001); n <- length(t)

# define data for c4 e4 g4 using sine waves with their frequencies
c4 <- sin(2 * pi * notes4[1] * t); e4 <- sin(2 * pi * notes4[3] * t);
g4 <- sin(2 * pi * notes4[5] * t)

# define data for a chord and add a bit of noise

chord <- c4 + e4 + g4 + rnorm(n, 0, 0.3)

# generate profile data for all notes

x <- sapply(notes4, function(freq) sin(2 * pi * freq * t))

# fit the chord using the profiles for all notes

fit <- lm(chord ~ x - 1)

« after generating the data and running the linear regression, we can plot the results to see if the notes
are correctly identified

# set up plot

plot(c(0, 9), c(0, 1.5), xlab = "Note", ylab = "Coef 2", axes = FALSE, frame = TRUE, type = "n")
# set up azxes

axis(2)

axis(1, at = 1 : 8, labels = c("c4", "d4", "e4", "f4", "g4", "ad", "b4", "c5"))

# add vertical lines for each note

for (i in 1 : 8) abline(v = i, lwd = 3, col = grey(.8))

# plot the linear regression fits

lines(c(0, 1 : 8, 9), c(0, coef(fit)~2, 0), type = "1", 1lwd = 3, col = "red")
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Note

e as we can see from above, the correct notes were identified
e we can also use the Fast Fourier Transforms to identify the notes

— fft(data) = performs fast Fourier transforms on provided data
— Re(data) = subset to only the real components of the complex data
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# perform fast fourier transforms on the chord matriz
a <- fft(chord)

# plot only the real components of the fft
plot(Re(a)~2, type = "1")
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Index

e Note: the algorithm checks for all possible notes at all frequencies it can detect, which is why the peaks
are very high in magnitude

e Note: the symmetric display of the notes are due to periodic symmetries of the sine functions
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